Skip to main content
Log in

Phase transition and electrical investigation in lithium copper pyrophosphate compound Li2CuP2O7 using impedance spectroscopy

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium pyrophosphate compound Li2CuP2O7 has been synthesized through solid state reaction method. FTIR and XRD results, realized at room temperature, indicate respectively the dominant feature of pyrophosphate anion (P2O7)4− and a pure monoclinic phase with I2/a space group. Electrical and dielectric properties have been studied using impedance spectroscopy complex over a wide temperature (576–710 K) and frequency (209 Hz–1 MHz) range. From the direct and alternative conductivities (DC and AC), electrical conduction is found to be thermally activated process. The frequency-dependent AC conductivity obeys Jonscher’s universal power law σAC~Aωs. The differential scanning calorimetry spectrum discloses phase transition at 622 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Liu JB, Wang H, Wang S, Yan H (2003) Hydrothermal preparation of BiVO4 powders. Mater Sci Eng B 104:36–39

  2. Rho YH, Kanamura K, Fujisaki M, Hamagami J-i, Suda S-i, Umegaki T (2002) Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol–gel method. Solid State Ionics 151:151–157

  3. Rasiman MSA, Badrudin W, Kudin TIT, Yaakob MK, Taib MFM, Yahya MZA, Hassan OH (2014) Determination of Electronic Structure and Band Gap of Li2MnP2O7 via First-Principle Study. Integr Ferroelectr 155:71–79

  4. Barpanda P, Ye T, Lu J, Yamada Y, Chung SC, Nishimura S, Okubo M, Zhou H, Yamad A (2013) Splash Combustion Synthesis and Exploration of Alkali Metal Pyrophosphate (A2MP2O7, A= Li, Na) Cathodes. ECS Trans 50:71–77

  5. Lapshin AE, Petrova MA (2012) Mixed alkali-zinc diphosphates: Synthesis, structure, and properties. Glas Phys Chem 38:491–503

  6. Baitahe R, Yakorn NV (2016) Dielectric Properties and Characterizations of Binary Cu(2-x) MgxP2O7 Pyrophosphates. Ferroelectrics 490:174–183

  7. Spirlet MR, Rebizant J, Liegeois-Duyckaerts M (1993) Structure of lithium copper pyrophosphate. Acta Cryst C 49:209–211

  8. Gopalakrishna GS, Mahesh MJ, Ashamanjari KG, Shashidhara Prasad J (2008) Structure, thermal and magnetic characterization of hydrothermal synthesized Li2CuP2O7 crystals. Mater Res Bull 43:1171–1178

  9. Sindhu M, Ahlawat N, Sanghi S, Agarwal A, Dahiya R, Ahlawat N (2012) Rietveld refinement and impedance spectroscopy of calcium titanate. Curr Appl Phys 12:1429–1435

  10. Lebernegg S, Tsirlin AA, Janson O, Nath R, Sichelschmidt J, Skourski Y, Amthauer G, Rosner H (2011) Magnetic model for A2CuP2O7 (A= Na, Li): One-dimensional versus two-dimensional behavior. Phys Rev B 84:174436–174444

  11. Baran EJ, Mercader RC, Massaferro A, Kremer E (2004) Vibrational and 57Fe-Mössbauer spectra of some mixed cation diphosphates of the type MIIFe2 III(P2O7)2. Spectrochim Acta A 60:1001–1005

  12. Chahine A, Et-tabirou M, Pascal JL (2004) FTIR and Raman spectra of the Na2O–CuO–Bi2O3–P2O5 glasses. Mater Lett 58:2776–2780

  13. Khay N, Ennaciri A, Rulmont A (2001) Structure and vibrational spectra of double diphosphates TlLnP2O7 (Ln= Dy, Ho, Y, Er, Yb). J Raman Spectrosc 32:1052–1058

  14. Hajlaoui S, Chaabane I, Oueslati A, Guidara K (2013) Anomalous dielectric behavior in centrosymmetric organic–inorganic hybrid bis-tetrapropylammonium hexachlorostannate. Crystal structure and properties. Solid State Sci 25:134–142

  15. Sallemi F, Megdiche M, Louati B, Guidara K (2014) Electrical properties and complex impedance analysis of K2ZnV2O7. Indian J Phys 88:1251–1256

  16. Rout SK, Hussian A, Lee JS, Kim IW, Woo SI (2009) Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method. J Alloys Compd 477:706–711

  17. Ashok K, Singh BP, Choudhary RNP, Thakur AK (2005) AC Impedance analysis of the effect of dopant concentration on electrical properties of calcium modified BaSnO 3. J Alloys Compd 394:292–302

  18. Langar A, Sdiri N, Elhouichet H, Ferid M (2014) Conductivity and dielectric behavior of NaPO3–ZnO–V2O5 glasses. J Alloys Compd 590:380–387

  19. Krichen M, Megdiche M, Gargouri M, Guidara K (2014) Frequency and temperature dependence of the dielectric properties and AC electrical conductivity in mixed pyrophosphate ceramic. Indian J Phys 88:1051–1058

  20. Karaa N, Hamdi B, Salah AB, Oueslati A, Zouari R (2010) Preparation, Infra-red, MAS-NMR and Structural Characterization of a New Copper Based Inorganic–Organic Hybrid Compound:[C5H6N2Cl]2CuCl4. J Inorg Organomet Polym 20:746–754

  21. Hui S(R), Roller J, Yick S, Zhang X, Decès-Petit C, Xie Y, Maric R, Ghosh D (2007) A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172:493–502

  22. Krichen M, Megdiche M, Guidara K, Gargouri M (2015) AC conductivity and mechanism of conduction study of lithium barium pyrophosphate Li2BaP2O7 using impedance spectroscopy. Ionics 21:935–948

  23. Chinarro E, Jurado JR, Figueiredo FM, Frade JR (2003) Bulk and grain boundary conductivity of Ca0.97 Ti1− xFexO3− δ materials. Solid State Ionics 160:161–168

  24. Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373:23–27

  25. Guillodo M, Fouletier J, Dessemond L, Del Gallo P (2001) Electrical properties of dense Me-doped bismuth vanadate (Me= Cu, Co) pO2-dependent conductivity determined by impedance spectroscopy. J Eur Ceram Soc 21:2331–2344

  26. Jayswal MS, Kanchan DK, Sharma P, Gondaliya N (2013) Relaxation process in PbI2–Ag2O–V2O5–B2O3 system: dielectric, AC conductivity and modulus studies. Mater Sci Eng B 178:775–784

  27. El-Nahass MM, Atta AA, Kamel MA, Huthaily SY (2013) AC conductivity and dielectric characterization of synthesized pN, N dimethylaminobenzylidenemalononitrile (DBM) organic dye. Vacuum 91:14–19

  28. Bekheet AE, Hegab NA (2009) Ac conductivity and dielectric properties of Ge20Se75 In 5 films. Vacuum 83:391–396

  29. Yahia IS, Hegab NA, Shakra AM, AL-Ribaty AM (2012) Conduction mechanism and the dielectric relaxation process of a-Se75Te25− xGax (x= 0, 5, 10 and 15 atwt%) chalcogenide glasses. Phys B 407:2476–2485

  30. Banarji B, Nayak P, Choudhary RNP (2008) Structural and impedance properties of KBa2V5O15 ceramics. Mater Res Bull 43:401–410

  31. Atta AA (2009) AC conductivity and dielectric measurements of bulk magnesium phthalocyanine (MgPc). J Alloys Compd 480:564–567

  32. Saidi K, Kamoun S, Ferid Ayedi H (2014) Electrical conductivity and dielectric relaxation studies of a polymeric hybrid compound: ([C2H10N2]CdCl2(SCN)2) n. Ionics 20:1317–1625

  33. Chouaib S, Ben Rhaiem A, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of Na2ZnP2O7. Bull Mater Sci 34:915–920

  34. Rhaiem AB, Chouaib S, Guidara K (2010) Dielectric relaxation and ionic conductivity studies of Ag2ZnP2O7. Ionics 16:455–463

  35. Ben Said R, Louati B, Guidara K (2014) Electrical conduction and thermodynamic properties of K2NiP2O7. Ionics 20:209–219

  36. Zaafouri A, Megdiche M, Gargouri M (2015) Studies of electric, dielectric, and conduction mechanism by OLPT model of Li4. Ionics 21:1867–1879

  37. Zaafouri A, Megdiche M, Mechi L, Gargouri M (2014) Ac conductivity study of lithium and potassium diphosphate LiK3P2O7 using impedance spectroscopy. Ionics 20:1255–1266

  38. Zaafouri A, Megdiche M, Gargouri M (2014) AC conductivity and dielectric behavior in lithium and sodium diphosphate LiNa3P2O7. J Alloys Compd 584:152–158

  39. Lanfredi S, Saia PS, Lebullenger R, Hernandes AC (2002) Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy. Solid State Ionics 146:329–339

  40. Vinoth Rathan S, Govindaraj G (2010) Electrical relaxation studies on Na2NbMP3O12 (M= Zn, Cd, Pb and Cu) phosphate glasses. Mater Chem Phys 120:255–262

  41. Yakuphanoglu F, Zaitsev DD, Trusov LA, Kazin PE (2007) Electrical conductivity and electrical modulus properties of 13SrO–5.5Fe2O3–0.5Al2O 3–8B2O3 magnetic glass ceramic. J Magn Magn Mater 312:43–47

  42. Mahamoud H, Louati B, Hlel F, Guidara K (2011) Impedance spectroscopy study of Pb2P2O7 compound. Ionics 17:223–228

  43. Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356–1365

  44. Patro LN, Hariharan K (2009) AC conductivity and scaling studies of polycrystalline SnF2. Mater Chem Phys 116:81–87

  45. Chanda S, Saha S, Dutta A, Sinha TP (2013) Raman spectroscopy and dielectric properties of nanoceramic NdFeO3. Mater Res Bull 48:1688–1693

  46. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2014) Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol–HgSe quantum dot hybrid films. J Phys D Appl Phys 47:275301–275314

  47. Thongbai P, Tangwancharoen S, Yamwong T, Maensiri S (2008) Dielectric relaxation and dielectric response mechanism in (Li, Ti)-doped NiO ceramics. J Phys Condens Matter 20:395227–395238

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Krichen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krichen, M., Gargouri, M., Guidara, K. et al. Phase transition and electrical investigation in lithium copper pyrophosphate compound Li2CuP2O7 using impedance spectroscopy. Ionics 23, 3309–3322 (2017). https://doi.org/10.1007/s11581-017-2161-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2161-3

Keywords

Navigation