Skip to main content
Log in

A Simple Model for the High Temperature Oxidation Kinetics of Silicon Nanoparticle Aggregates

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon nanoparticles are an emerging and promising material in many fields including electronics, catalysis, and biomaterial engineering. Synthesis in the gas phase via aerosol routes allows tuning and engineering material features such as primary particle size distribution, agglomerate size distribution, crystallite size, and morphology. Proper control of these features as well as post-synthesis processing such as surface oxidation is very relevant for making the nanoparticles chemically stable. Therefore, a kinetic expression for determining the extent of oxidation in silicon nanoparticles is necessary. Significant work has been devoted to understanding the kinetics of monocrystalline silicon, and generally accepted models such as the one by Deal and Grove provide a very accurate description of bulk silicon oxidation. However, these models are not as accurate for the first hundreds of angstroms of the oxidation. While this might be acceptable for bulk wafers, it has critical results for silicon nanoparticles with diameters around such range. Furthermore, many applications involve silicon nanoparticle aggregates with a shape far away from perfect spheres. For this reason, in this work, we propose an expression for the parabolic oxidation kinetics of polycrystalline silicon nanoparticle aggregates at 1000 °C with surface area in the range of 3 to 19 m2/g. and crystallite sizes from 50 to 70 nm. The activation energy of the process is also reported to be linked to the crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sofield CJ, Stoneham AM (1995) Oxidation of silicon - the VLSI gate dielectric. Semicond Sci Technol 10(3):215–244. https://doi.org/10.1088/0268-1242/10/3/001

    Article  CAS  Google Scholar 

  2. Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36(12):3770–3778. https://doi.org/10.1063/1.1713945

    Article  CAS  Google Scholar 

  3. Doremus RH (1984) Oxidation of silicon: strain and linear kinetics. Thin Solid Films 122(3):191–196

    Article  CAS  Google Scholar 

  4. Pieraggi B (1987) Calculations of parabolic reaction-rate constants. Oxid Met 27(3–4):177–185. https://doi.org/10.1007/bf00667057

    Article  CAS  Google Scholar 

  5. Irene E (1978) Silicon oxidation studies: some aspects of the initial oxidation regime. J Electrochem Soc 125(10):1708–1714

    Article  CAS  Google Scholar 

  6. Marcus RB, Sheng TT (1982) The oxidation of shaped silicon surfaces. J Electrochem Soc 129(6):1278–1282. https://doi.org/10.1149/1.2124118

    Article  CAS  Google Scholar 

  7. Marcus R, Sheng T, Lin P (1982) Polysilicon/SiO2 interface microtexture and dielectric breakdown. J Electrochem Soc 129(6):1282–1289

    Article  CAS  Google Scholar 

  8. Jimin W, Yu L, Ruiwei L (2003) An improved silicon-oxidation-kinetics and accurate analytic model of oxidation. Solid State Electron 47(10):1699–1705

    Article  Google Scholar 

  9. Fargeix A, Ghibaudo G, Kamarinos G (1983) A revised analysis of dry oxidation of silicon. J Appl Phys 54(5):2878–2880. https://doi.org/10.1063/1.332286

    Article  CAS  Google Scholar 

  10. EerNisse EP (1979) Stress in thermal SiO2 during growth. Appl Phys Lett 35(1):8–10. https://doi.org/10.1063/1.90905

    Article  CAS  Google Scholar 

  11. EerNisse EP (1977) Viscous flow of thermal SiO2. Appl Phys Lett 30(6):290–293. https://doi.org/10.1063/1.89372

    Article  CAS  Google Scholar 

  12. Fargeix A, Ghibaudo G (1983) Dry oxidation of silicon: a new model of growth including relaxation of stress by viscous flow. J Appl Phys 54(12):7153–7158. https://doi.org/10.1063/1.331986

    Article  CAS  Google Scholar 

  13. Irene EA (1983) Silicon oxidation studies: a revised model for thermal oxidation. J Appl Phys 54(9):5416–5420. https://doi.org/10.1063/1.332722

    Article  CAS  Google Scholar 

  14. Kim BH, Pamungkas M, Park M, Kim G, Lee KR, Chung YC (2011) Stress evolution during the oxidation of silicon nanowires in the sub-10 nm diameter regime. Appl Phys Lett 99(14). https://doi.org/10.1063/1.3643038

  15. Yang DQ, Gillet JN, Meunier M, Sacher E (2005) Room temperature oxidation kinetics of Si nanoparticles in air, determined by x-ray photoelectron spectroscopy. J Appl Phys 97(2). https://doi.org/10.1063/1.1835566

  16. Agnello S, Di Francesca D, Alessi A, Iovino G, Cannas M, Girard S, Boukenter A, Ouerdane Y (2013) Interstitial O2 distribution in amorphous SiO2 nanoparticles determined by Raman and photoluminescence spectroscopy. J Appl Phys 114(10):104305. https://doi.org/10.1063/1.4820940

    Article  CAS  Google Scholar 

  17. Li S, Silvers SJ, El-Shall MS (1997) Surface oxidation and luminescence properties of Weblike agglomeration of silicon Nanocrystals produced by a laser vaporization− controlled condensation technique. J Phys Chem B 101(10):1794–1802

    Article  CAS  Google Scholar 

  18. Ostraat ML, Brongersma M, Atwater HA, Flagan RC (2005) Nanoengineered silicon/silicon dioxide nanoparticle heterostructures. Solid State Sci 7(7):882–890. https://doi.org/10.1016/j.solidstatesubstances.2005.01.019

    Article  CAS  Google Scholar 

  19. Mangolini L (2013) Synthesis, properties, and applications of silicon nanocrystals. J Vac Sci Technol B 31(2). https://doi.org/10.1116/1.4794789

  20. Yoo B, Ma K, Zhang L, Burns A, Sequeira S, Mellinghoff I, Brennan C, Wiesner U, Bradbury MS (2015) Ultrasmall dual-modality silica nanoparticle drug conjugates: design, synthesis, and characterization. Biorg med Chem 23(22):7119–7130. https://doi.org/10.1016/j.bmc.2015.09.050

    Article  CAS  Google Scholar 

  21. Pereira RN, Rowe DJ, Anthony RJ, Kortshagen U (2011) Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds. PhRvB 83(15):9. https://doi.org/10.1103/PhysRevB.83.155327

    Article  CAS  Google Scholar 

  22. Diebolder P, Vazquez-Pufleau M, Bandara N, Mpoy C, Raliya R, Thimsen E, Biswas P, Rogers BE (2018) Aerosol-synthesized siliceous nanoparticles: impact of morphology and functionalization on biodistribution. Int J Nanomedicine 13:7375

    Article  CAS  Google Scholar 

  23. Wiggers H, Starke R, Roth P (2001) Silicon particle formation by pyrolysis of silane in a hot wall gasphase reactor. Chem Eng Technol 24(3):261–264

    Article  CAS  Google Scholar 

  24. Vazquez-Pufleau M, Yamane M (2019) Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth. Chem Eng Sci:115230

  25. Vazquez-Pufleau M (2019) The effect of nanoparticle morphology in the filtration efficiency and saturation of a silicon beads fluidized bed. AIChE J

  26. Vazquez-Pufleau M, Wang Y, Biswas P, Thimsen E (2020) Measurement of sub-2 nm stable clusters during silane pyrolysis in a furnace aerosol reactor, just accepted. J Chem Phys

  27. Vazquez-Pufleau M, Chadha TS, Yablonsky G, Biswas P (2017) Carbon elimination from silicon kerf: Thermogravimetric analysis and mechanistic considerations. Sci Rep 7:40535. https://doi.org/10.1038/srep40535http://www.nature.com/articles/srep40535#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vazquez-Pufleau M, Chadha TS, Yablonsky G, Erk HF, Biswas P (2015) Elimination of carbon contamination from silicon kerf using a furnace aerosol reactor methodology. Ind Eng Chem Res 54(22):5914–5920

    Article  CAS  Google Scholar 

  29. Liao Y-C, Nienow AM, Roberts JT (2006) Surface chemistry of aerosolized nanoparticles: thermal oxidation of silicon. J Phys Chem B 110(12):6190–6197

    Article  CAS  Google Scholar 

  30. Das D, Farjas J, Roura P, Viera G, Bertran E (2001) Enhancement of oxidation rate of a-Si nanoparticles during dehydrogenation. Appl Phys Lett 79(22):3705–3707. https://doi.org/10.1063/1.1420533

    Article  CAS  Google Scholar 

  31. Yang DQ, Meunier M, Sacher E (2006) Room temperature air oxidation of nanostructured Si thin films with varying porosities as studied by x-ray photoelectron spectroscopy. J Appl Phys 99(8). https://doi.org/10.1063/1.2193168

  32. Winters BJ, Holm J, Roberts JT (2011) Thermal processing and native oxidation of silicon nanoparticles. J Nanopart Res 13(10):5473–5484

    Article  CAS  Google Scholar 

  33. Okada R, Iijima S (1991) Oxidation property of silicon small particles. Appl Phys Lett 58(15):1662–1663

    Article  CAS  Google Scholar 

  34. Holm J, Roberts JT (2009) Sintering, coalescence, and compositional changes of hydrogen-terminated silicon nanoparticles as a function of temperature. J Phys Chem C 113(36):15955–15963

    Article  CAS  Google Scholar 

  35. Yu DK, Zhang RQ, Lee ST (2002) Structural properties of hydrogenated silicon nanocrystals and nanoclusters. J Appl Phys 92(12):7453–7458. https://doi.org/10.1063/1.1513878

    Article  CAS  Google Scholar 

  36. Holm J, Roberts JT (2007) Thermal oxidation of 6 nm aerosolized silicon nanoparticles: size and surface chemistry changes. Langmuir 23(22):11217–11224. https://doi.org/10.1021/la7010869

    Article  CAS  PubMed  Google Scholar 

  37. Lu ZH, Sacher E, Yelon A (1988) Kinetics of the room-temperature air oxidation of hydrogenated amorphous-silicon and crystalline silicon. Philos Mag B-Phys Condens Matter Stat Mech Elec Optical Magn Prop 58(4):385–388. https://doi.org/10.1080/13642818808218381

    Article  CAS  Google Scholar 

  38. Fritzsche H (1984) Chapter 9 electronic properties of surfaces in a-Si: H. in: Jacques IP (ed) semiconductors and semimetals, vol volume 21, part C. Elsevier, pp 309-345. Doi:https://doi.org/10.1016/S0080-8784(08)63073-2

  39. Mills RL, Dhandapani B, He J (2003) Highly stable amorphous silicon hydride. Sol Energy Mater Sol Cells 80(1):1–20. https://doi.org/10.1016/S0927-0248(03)00107-7

    Article  CAS  Google Scholar 

  40. Vazquez-Pufleau M (2016) Applications of aerosol Technologies in the Silicon Industry. Washington University in St. Louis, Saint Louis MO

    Google Scholar 

  41. Nichols G, Byard S, Bloxham MJ, Botterill J, Dawson NJ, Dennis A, Diart V, North NC, Sherwood JD (2002) A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J Pharm Sci 91(10):2103–2109

    Article  CAS  Google Scholar 

  42. Walter D (2013) Primary particles–agglomerates–aggregates. Nanomaterials:9–24

  43. Rodelsperger K, Podhorsky S, Bruckel B, Dahmann D, Hartfiel G-D, Woitowitz H-J (2003) Charakterisierung von Aerosolen ultrafeiner Teilchen fur den Arbeitsschutz (characterization of ultrafine particle aerosols for occupational safety, final report of project F1804) (German). ARBEITSMEDIZIN SOZIALMEDIZIN UMWELTMEDIZIN 38(3):174–174

    Google Scholar 

  44. Ding Y, Riediker M (2015) A system to assess the stability of airborne nanoparticle agglomerates under aerodynamic shear. J Aerosol Sci 88:98–108

    Article  CAS  Google Scholar 

  45. Pap AE, Kordas K, George TF, Leppavuori S (2004) Thermal oxidation of porous silicon: study on reaction kinetics. J Phys Chem B 108(34):12744–12747. https://doi.org/10.1021/jp049323y

    Article  CAS  Google Scholar 

  46. Bohling C, Sigmund W (2016) Self-limitation of native oxides explained. Silicon 8(3):339–343. https://doi.org/10.1007/s12633-015-9366-8

    Article  CAS  Google Scholar 

  47. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2):1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  48. Filipovic L (2012) Topography simulation of novel processing techniques. Thesis, Technische Universität Wien, Vienna, Austria

  49. Vyazovkin S (2016) A time to search: finding the meaning of variable activation energy. PCCP 18(28):18643–18656

    Article  CAS  Google Scholar 

  50. Licciardello A, Puglisi O, Pignataro S (1986) Effect of organic contaminants on the oxidation-kinetics of silicon at room-temperature. Appl Phys Lett 48(1):41–43. https://doi.org/10.1063/1.96755

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Pratim Biswas for useful discussions that helped in the materialization of this work, also Prof. Sofia Hayes for interesting discussions leading to the NMR measurements that were carried out by Jinlei Cui, to Prof. James Ballard for revising and proofreading this manuscript. This work was partially supported by the National Science Foundation, the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012. Also thanks to the Secretaria de Educacion Publica of Mexico for their support. The Nano Research Facility (NRF) at Washington University in St. Louis, a member of the National Nanotechnology Infrastructure Network (NNIN) was used for SEM and TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vazquez-Pufleau.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Pufleau, M. A Simple Model for the High Temperature Oxidation Kinetics of Silicon Nanoparticle Aggregates. Silicon 13, 189–200 (2021). https://doi.org/10.1007/s12633-020-00415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00415-3

Keywords

Navigation