Skip to main content
Log in

Thermal processing and native oxidation of silicon nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS) were used to investigate in-air oxidation of silicon nanoparticles ca. 11 nm in diameter. Particle samples were prepared first by extracting them from an RF plasma synthesis reactor, and then heating them in an inert carrier gas stream. The resulting particles had varying surface hydrogen coverages and relative amounts of SiH x (x = 1, 2, and 3), depending on the temperature to which they had been heated. The particles were allowed to oxidize in-air for several weeks. FTIR, XPS, and EELS analyses that were performed during this period clearly establish that adsorbed hydrogen retards oxidation, although in complex ways. In particular, particles that have been heated to intermediate hydrogen coverages oxidize more slowly in air than do freshly generated particles that have a much higher hydrogen content. In addition, the loss of surface hydride species at high processing temperatures results in fast initial oxidation and the formation of a self-limiting oxide layer. Analogous measurements made on deuterium-covered particles show broadly similar behavior; i.e., that oxidation is the slowest at some intermediate coverage of adsorbed deuterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bapat A, Gatti M et al (2007) A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices. J Phys D Appl Phys 40:2247–2257

    Article  CAS  Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287

    Article  CAS  Google Scholar 

  • Burleson DJ, Driessen MD et al (2004) On the characterization of environmental nanoparticles. J Environ Sci Health A 39:2707–2753

    Article  Google Scholar 

  • Carter RS, Harley SJ et al (2005) Use of NMR spectroscopy in the synthesis and characterization of air- and water-stable silicon nanoparticles from porous silicon. Chem Mater 17:2932–2939

    Article  CAS  Google Scholar 

  • Chabal YJ, Weldon MK et al (2001) Fundamental aspects of silicon oxidation. Springer-Verlag, New York

    Book  Google Scholar 

  • Dabrowski J, Mussig H (2000) Silicon surfaces and formation of interfaces. World Scientific, New Jersey

    Book  Google Scholar 

  • Dong Y (2005) Devices made on single crystal silicon nanoparticles. Dissertation. University of Minnesota, Minnesota

  • Elena VR (2006) Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J Mater Chem 16:1421–1430

    Article  Google Scholar 

  • Fritzsche H (1984) Electronic properties of surfaces in a-Si:H. In: Pankove JI (ed) Semiconductors and semimetals: hydrogenated amorphous silicon. Academic Press, Inc, New York, pp 314–316

    Google Scholar 

  • Hawa T, Zachariah MR (2004) Internal pressure and surface tension of bare and hydrogen coated silicon nanoparticles. J Chem Phys 121:9043. doi:10.1063/1.1797073

    Article  CAS  Google Scholar 

  • Holm J, Roberts JT (2007a) Surface chemistry of aerosolized silicon nanoparticles: evolution and desorption of hydrogen from 6-nm diameter particles. J Am Chem Soc 129:2496–2503

    Article  CAS  Google Scholar 

  • Holm J, Roberts JT (2007b) Thermal oxidation of 6 nm aerosolized silicon nanoparticles: size and surface chemistry changes. Langmuir 23:11217–11224. doi:10.1021/10010869

    Article  CAS  Google Scholar 

  • Holm J, Roberts JT (2009) Sintering, coalescence, and compositional changes of hydrogen-terminated silicon nanoparticles as a function of temperature. J Phys Chem C 113:15955–15963. doi:10.1021/jp905748j

    Article  CAS  Google Scholar 

  • Hua F, Erogbogbo F et al (2006) Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22:4363–4370

    Article  CAS  Google Scholar 

  • Klauser F, Stijepovic R et al (2009) Oxidation study of silicon nanoparticle thin films on HOPG. Surf Sci 603:2999–3004. doi:10.1016/j.susc.2009.08.007

    Article  CAS  Google Scholar 

  • Kortshagen U, Mangolini L et al (2007) Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications. J Nanopart Res 9:39–52

    Article  CAS  Google Scholar 

  • Kovalevskii AA, Shevchenok AA et al (2008) Oxidation behavior of micro- and nanostructured silicon powders. Inorg Mater 44:445–449

    Article  CAS  Google Scholar 

  • Liao YC, Roberts JT (2006) Self-assembly of organic monolayers on aerosolized silicon nanoparticles. J Am Chem Soc 128:9061–9065

    Article  CAS  Google Scholar 

  • Liao Y-C, Nienow AM et al (2006) Surface chemistry of aerosolized nanoparticles: thermal oxidation of silicon. J Phys Chem B 110:6190–6197

    Article  CAS  Google Scholar 

  • Mangolini L, Thimsen E et al (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5:655–659

    Article  CAS  Google Scholar 

  • Marra DC, Edelberg EA et al (1998) Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. J Vac Sci Technol A 16:3199–3210. doi:10.1116/1.581520

    Article  CAS  Google Scholar 

  • Marra DC, Kessels WMM et al (2003) Surface hydride composition of plasma deposited hydrogenated amorphous silicon: in situ infrared study of ion flux and temperature dependence. Surf Sci 530:1–16. doi:10.1016/S0039-6028(03)00396-0

    Article  CAS  Google Scholar 

  • Matsumoto T, Belogorokhov AI et al (2000) The effect of deuterium on the optical properties of free-standing porous silicon layers. Nanotechnology 11:340–347

    Article  CAS  Google Scholar 

  • Mayeri D, Phillips BL et al (2001) NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi. Chem Mater 13:765–770

    Article  CAS  Google Scholar 

  • Maynard A, Kuempel E (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614

    Article  CAS  Google Scholar 

  • Mills RL, Dhandapani B et al (2003) Highly stable amorphous silicon hydride. Sol Energy Mater Sol Cells 80:1–20. doi:10.1016/S0927-0248(03)00107-7

    Article  CAS  Google Scholar 

  • Miura T-A, Niwano M et al (1996) Initial stages of oxidation of hydrogen-terminated Si surface stored in air. Appl Surf Sci 100–101:454–459

    Article  Google Scholar 

  • Nayfeh MH (2003) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  • Nienow AM, Roberts JT (2006) Chemical vapor deposition of zirconium oxide on aerosolized silicon nanoparticles. Chem Mater 18:5571–5577

    Article  CAS  Google Scholar 

  • NIST X-ray Photoelectron Spectroscopy Database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003) http://srdata.nist.gov/xps/

  • Ogata YH, Yoshimi N et al (2001) Structural change in p-type porous silicon by thermal annealing. J Appl Phys 90:6487–6492. doi:10.1063/1.1416862

    Article  CAS  Google Scholar 

  • Pai PG, Chao SS et al (1986) Infrared spectroscopic study of SiO[sub x] films produced by plasma enhanced chemical vapor deposition. J Vac Sci Technol A 4:689–694. doi:10.1116/1.573833

    Article  CAS  Google Scholar 

  • Schulmeister K, Mader W (2003) TEM investigation on the structure of amorphous silicon monoxide. J Non Cryst Solids 320:143–150. doi:10.1016/S0022-3093(03)00029-2

    Article  CAS  Google Scholar 

  • Tersoff J, Tu Y et al (1998) Effect of curvature and stress on reaction rates at solid interfaces. Appl Phys Lett 73:2328–2330. doi:10.1063/1.121812

    Article  CAS  Google Scholar 

  • Yi LX, Heitmann J et al (2003) Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing. J Phys Condens Matter 15:S2887–S2895. doi:10.1088/0953-8984/15/39/012

    Article  CAS  Google Scholar 

  • Zou J, Baldwin RK et al (2004) Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett 4:1181–1186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Bing Lou and Ozan Ugurlu for their help in analysis. This study was supported partially by the MRSEC Program of the National Science Foundation under award number DMR-0819885 and partly by the National Science Foundation under award number CHE-0924431. Parts of this study were carried out at the Institute of Technology Characterization Facility, the University of Minnesota, which has received capital equipment funding from the NSF through the MRSEC, ERC, and MRI programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Roberts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winters, B.J., Holm, J. & Roberts, J.T. Thermal processing and native oxidation of silicon nanoparticles. J Nanopart Res 13, 5473 (2011). https://doi.org/10.1007/s11051-011-0535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0535-4

Keywords

Navigation