Skip to main content
Log in

Performance Analysis of an HJ-IBC Silicon Solar Cell in Ultra-High Temperatures: Possibility of Lower Reduction Efficiency Rate

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The paper investigates the influence of various geometrical parameters (thickness of intrinsic a-Si, gap distance, n-type and p-type stripes) and the temperature on the performance of heterojunction interdigitated back contact (HJ-IBC) solar cell. There exists a strong correlation between the gap distance and the width of the n-type or p-type of the amorphous silicon (a-Si) layer as well as the thickness of the a-Si layer and the performance of the HJ-IBC silicon solar cells. It is shown that the defined reduction efficiency rate of an HJ-IBC silicon solar cell is lower than the reduction efficiency rate of conventional silicon solar, suggesting a better performance in the outdoor condition of the HJ-IBC solar cells. It is also argued that a temperature-dependent free HJ-IBC solar cell can be realized by tuning the intrinsic layer thickness. Furthermore, the comparison between top/rear contact HJ and HJ-IBC solar cell shows that HJ-IBC has the best performance in outdoor condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heidarzadeh H, Rostami A, Matloub S, Dolatyari M, Rostami G (2015) Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement. Appl Opt 54:3591–3601

    Article  CAS  Google Scholar 

  2. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032

    Article  CAS  Google Scholar 

  3. Jangjoy A, Bahador H, Heidarzadeh H (2019) Design of an ultra-thin silicon solar cell using localized surface Plasmonic effects of embedded paired nanoparticles. Opt Commun 450:216–221

    Article  CAS  Google Scholar 

  4. Mokari G, Heidarzadeh H (2019) Efficiency enhancement of an ultra-thin silicon solar cell using Plasmonic coupled Core-Shell nanoparticles. Plasmonics:1–9

  5. Heidarzadeh H, Tavousi A (2019) Performance enhancement methods of an ultra-thin silicon solar cell using different shapes of back grating and angle of incidence light. Mater Sci Eng B 240:1–6

    Article  CAS  Google Scholar 

  6. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J PHOTOVOLT 4:1433–1435

    Article  Google Scholar 

  7. Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E (2014) 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J PHOTOVOLT 4:96–99

    Article  Google Scholar 

  8. Conibeer G, Green M, Corkish R, Cho Y, Cho E-C, Jiang C-W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662

    Article  Google Scholar 

  9. Heidarzadeh H, Rostami A, Dolatyari M, Rostami G (2016) Design criteria for silicon nanostructures in silicon based triple junction solar cell. Opt Quant Electron 48:510

    Article  Google Scholar 

  10. Heidarzadeh H, Baghban H, Rasooli H, Dolatyari M, Rostami A (2014) A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C–SiC/Si. optiK Journal for Light and Electron Optics 125:1292–1296

  11. Heidarzadeh H, Rostami A, Dolatyari M, Rostami G (2014) Efficiency analysis and electronic structures of 3C-SiC and 6H-SiC with 3d elements impurities as intermediate band photovoltaics. J. Photonics Energy 4:042098–042098

    Article  Google Scholar 

  12. H. Heidarzadeh, A. Rostami, M. Dolatyari, G. Rostami (2014) Effect of dopant concentrations on conversion efficiency of SiC-based intermediate band solar cells, in: International congress on energy efficiency and energy related materials (ENEFM2013), Springer, pp. 119–124

  13. Heidarzadeh H (2019) Transition metal-doped 3C-SiC as a promising material for intermediate band solar cells. Opt Quant Electron 51:32

    Article  Google Scholar 

  14. M. Esgandari, H. Heydarzadeh, A. Rostami, M. Dolatyari, G. Rostami, Temperature effect on intermediate band solar cells (IBSCs). In 2015 international conference on photonics, optics and laser technology (PHOTOPTICS) 2015 Mar 13 (Vol. 2, pp. 96–100). IEEE

  15. Esgandari M, Heidarzadeh H, Rostami A, Rostami G, Dolatyari M (2015) A proposal for intermediate band solar cells with optimized transition energy in Cr doped 3C-SiC. 2nd international congress on energy efficiency and energy related materials (ENEFM2014). Springer, Cham, pp 69–76

    Chapter  Google Scholar 

  16. Beard MC, Knutsen KP, Yu P, Luther JM, Song Q, Metzger WK, Ellingson RJ, Nozik AJ (2007) Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett 7:2506–2512

    Article  CAS  Google Scholar 

  17. Beard MC, Luther JM, Semonin OE, Nozik AJ (2012) Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc Chem Res 46:1252–1260

    Article  Google Scholar 

  18. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 45). Prog Photovolt Res Appl 23:1–9

    Article  Google Scholar 

  19. MA Green, (2006) Third generation photovoltaics, Springer

  20. Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H (2017) Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energy Mater Sol Cells 173:37–42

    Article  CAS  Google Scholar 

  21. Savin H, Repo P, Von Gastrow G, Ortega P, Calle E, Garín M, Alcubilla R (2015) Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol 10:624–628

    Article  CAS  Google Scholar 

  22. Franklin E, Fong K, McIntosh K, Fell A, Blakers A, Kho T, Walter D, Wang D, Zin N, Stocks M (2016) Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell. Prog Photovolt Res Appl 24:411–427

    Article  CAS  Google Scholar 

  23. Nakamura J, Asano N, Hieda T, Okamoto C, Katayama H, Nakamura K (2014) Development of heterojunction back contact Si solar cells. IEEE J PHOTOVOLT 4:1491–1495

    Article  Google Scholar 

  24. Krichen M, Zouari A, Arab AB (2008) Effect of the interface states on the cell parameters of a thin film quasi-monocrystalline porous silicon as an active layer. Microelectron J 39:1433–1438

    Article  CAS  Google Scholar 

  25. Um H-D, Kim N, Lee K, Hwang I, Seo JH, Seo K (2016) Dopant-free all-back-contact Si nanohole solar cells using MoO x and LiF films. Nano Lett 16:981–987

    Article  CAS  Google Scholar 

  26. Xu M, Bearda T, Radhakrishnan HS, Jonnak SK, Hasan M, Malik S, Filipič M, Depauw V, Van Nieuwenhuysen K, Abdulraheem Y (2017) Silicon heterojunction interdigitated back-contact solar cells bonded to glass with efficiency> 21%. Sol Energy Mater Sol Cells 165:82–87

    Article  CAS  Google Scholar 

  27. Trinh CT et al (2018) Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%. Sol Energy Mater Sol Cells 174:187–195

    Article  CAS  Google Scholar 

  28. Heidarzadeh H, Rostami A, Dolatyari M, Rostami G (2016) Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating. Appl Opt 55:1779–1785

    Article  CAS  Google Scholar 

  29. Zarede T et al (2018) 3D numerical simulation of bifacial Heterojunction silicon p-type solar cell. Silicon:1–9

  30. Verlinden PJ, Aleman M, Posthuma N, Fernandez J, Pawlak B, Robbelein J, Debucquoy M, Van Wichelen K, Poortmans J (2012) Simple power-loss analysis method for high-efficiency Interdigitated Back contact (IBC) silicon solar cells. Sol Energy Mater Sol Cells 106:37–41

    Article  CAS  Google Scholar 

  31. Rahman T, To A, Pollard ME, Grant NE, Colwell J, Payne DN, Murphy JD, Bagnall DM, Hoex B, Boden SA (2018) Minimising bulk lifetime degradation during the processing of interdigitated back contact silicon solar cells. Prog Photovolt Res Appl 26:38–47

    Article  CAS  Google Scholar 

  32. Xiao C, Yu X, Yang D, Que D (2014) Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells. Sol Energy Mater Sol Cells 128:427–434

    Article  CAS  Google Scholar 

  33. Singh P, Ravindra NM (2012) Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol Cells 101:36–45

    Article  CAS  Google Scholar 

  34. Singh P, Singh S, Lal M, Husain M (2008) Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Sol Energy Mater Sol Cells 92:1611–1616

    Article  CAS  Google Scholar 

  35. Rostami A, Heidarzadeh H, Baghban H, Dolatyari M, Rasooli H (2013) Thermal stability analysis of concentrating single-junction silicon and SiC-based solar cells. J Optoelectron Adv Mater 15:1–3

    CAS  Google Scholar 

  36. Purohit Z, Chaliyawala H, Kumar M, Tripathi B (2018) Estimating various losses in c-Si solar cells subjected to partial shading: insights into J–V performance reduction. J Comput Electron:1–11

  37. Lin AS, Phillips JD (2009) Drift-diffusion modeling for impurity photovoltaic devices. IEEE Trans. Electron Devices 56:3168–3174

    Article  CAS  Google Scholar 

  38. Fossum JG, Lee DS (1982) A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon. Solid State Electron 25:741–747

    Article  CAS  Google Scholar 

  39. Law ME, Solley E, Liang M, Burk DE (1991) Self-consistent model of minority-carrier lifetime, diffusion length, and mobility. IEEE} Electron Device Lett 12:401–403

    Article  Google Scholar 

  40. Belarbi M, Beghdad M, Mekemeche A (2016) Simulation and optimization of n-type interdigitated back contact silicon heterojunction (IBC-SiHJ) solar cell structure using Silvaco Tcad Atlas. Sol Energy 127:206–215

    Article  CAS  Google Scholar 

  41. Kerr MJ, Cuevas A (2002) General parameterization of auger recombination in crystalline silicon. J Appl Phys 91:2473–2480

    Article  CAS  Google Scholar 

  42. Lu, M. et al., 2009. Optimization of interdigitated back contact silicon heterojunction solar cells by two-dimensional numerical simulation. In: Proceedings of 34th IEEE PVSC, Philadelphia, USA

  43. Lu M, Das U, Bowden S, Hegedus S, Birkmire R (2011) Optimization of interdigitated back contact silicon heterojunction solar cells: tailoring hetero-interface band structures while maintaining surface passivation. Prog Photovolt Res Appl 19:326–338

    Article  CAS  Google Scholar 

  44. Skoplaki E, Palyvos J (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83:614–624

    Article  CAS  Google Scholar 

  45. Ganji J, Kosarian A, Kaabi H (2016) Numerical modeling of thermal behavior and structural optimization of a-Si: H solar cells at high temperatures. J Comput Electron 15:1541–1553

    Article  CAS  Google Scholar 

  46. Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. physica 34:149–154

    Article  CAS  Google Scholar 

  47. Fan H (1951) Temperature dependence of the energy gap in semiconductors. Phys Rev 82:900–905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to express their sincere thanks to University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Heidarzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, H. Performance Analysis of an HJ-IBC Silicon Solar Cell in Ultra-High Temperatures: Possibility of Lower Reduction Efficiency Rate. Silicon 12, 1369–1377 (2020). https://doi.org/10.1007/s12633-019-00230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00230-5

Keywords

Navigation