Skip to main content

Advertisement

Log in

Numerical modeling of thermal behavior and structural optimization of a-Si:H solar cells at high temperatures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A large amount of solar energy is collected in tropical zones of the earth, where the temperature of photo-voltaic (PV) modules can exceed to more than \(70\,^{\circ }\text {C}\). At such high temperatures, the performance of most solar cells is greatly degraded, since the performance parameters of the cells are mainly decreasing functions of temperature. Despite the high importance of solar energy conversion in hot places, little attention has been paid to the investigation of high-temperature effects on the conversion efficiency of the cells. In this paper, the performance of a wide selection of solar cells of different structures made from different materials is analyzed at high temperatures in the range of 50–75 \(^{\circ }\text {C}\), which is different from the standard test condition usually used in the assessment of solar cells. An accurate model for thermal behavior of the cell is suggested, in which almost all important parameters affecting each layer on the cell’s thermal behavior are included, such as mobility, thermal velocity of carriers, bandgap, Urbach energy of band tails, electron affinity, relative permittivity, and effective density of states in the valence and conduction bands. The effects of possible arrangements of different layers and their materials and structural parameters, as well as light-induced defects and sunlight intensity, are also studied in the analysis. A relation is proposed between the optimal thickness of the absorber layer and the working temperature. Finally, an optimal structure of the solar cell at high temperatures is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Green, M.A.: Crystalline and thin-film silicon solar cells: state of the art and future potential. Sol. Energy 74(3), 181–192 (2003)

    Article  Google Scholar 

  2. Bougoffa, A., Trabelsi, A., Zouari, A., Dhahri, E.: Analysis of external quantum efficiency and conversion efficiency of thin crystalline silicon solar cells with textured front surface. J. Comput. Electron. 1–10 (2016)

  3. Sriprapha, K., Yunaz, I.A., Hiza, S., Ahn, K.H., Myong, S.Y., Yamada, A., Konagai, M.: Temperature dependence of silicon-based thin film solar cells on their intrinsic absorber. MRS Proc. 989, 0989–A24–02 (6 pages) (2007)

  4. Riesen, Y., Stuckelberger, M., Haug, F.J., Ballif, C., Wyrsch, N.: Temperature dependence of hydrogenated amorphous silicon solar cell performances. J. Appl. Phys. 119(4), 44–505 (2016)

    Article  Google Scholar 

  5. Kondo, M., Nishio, H., Kurata, S., Hayashi, K., Takenaka, A., Ishikawa, A., Nishimura, K., Yamagishi, H., Tawada, Y.: Effective conversion efficiency enhancement of amorphous silicon modules by operation temperature elevation. Sol. Energy Mater. Sol. Cells 49(14), 1–6 (1997)

    Article  Google Scholar 

  6. Akhmad, K., Kitamura, A., Yamamoto, F., Okamoto, H., Takakura, H., Hamakawa, Y.: Outdoor performance of amorphous silicon and polycrystalline silicon PV modules. Sol. Energy Mater. Sol. Cells 46(3), 209–218 (1997)

    Article  Google Scholar 

  7. Fukae, K., Chin Chou, L., Tamechika, M., Takehara, N., Saito, K., Kajita, I., Kondo, E.: Outdoor performance of triple stacked a-Si photovoltaic module in various geographical locations and climates. In: IEEE Conference Record of the Twenty Fifth Photovoltaic Specialists Conference, pp. 1227–1230 (1996)

  8. Virtuani, A., Strepparava, D., Friesen, G.: A simple approach to model the performance of photovoltaic solar modules in operation. Sol. Energy 120, 439–449 (2015)

    Article  Google Scholar 

  9. Shima, M., Isomura, M., Wakisaka, K.I., Murata, K., Tanaka, M.: The influence of operation temperature on the output properties of amorphous silicon-related solar cells. Sol. Energy Mater. Sol. Cells 85(2), 167–175 (2005)

    Article  Google Scholar 

  10. Kameda, M., Sakai, S., Isomura, M., Sayama, K., Hishikawa, Y., Matsumi, S., Haku, H., Wakisaka, K., Tanaka, M., Kiyama, S., Tsuda, S., Nakano, S.: Efficiency evaluation of a-Si and c-Si solar cells for outdoor use. In: IEEE Conference Record of the Twenty Fifth Photovoltaic Specialists Conference, pp. 1049–1052 (1996)

  11. Varache, R., Leendertz, C., Gueunier-Farret, M.E., Haschke, J., Muñoz, D., Korte, L.: Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol. Energy Mater. Sol. Cells 141, 14–23 (2015)

    Article  Google Scholar 

  12. Altermatt, P.P.: Models for numerical device simulations of crystalline silicon solar cells-a review. J. Comput. Electron. 10(3), 314–330 (2011)

    Article  Google Scholar 

  13. Powell, M.J., Deane, S.C.: Improved defect-pool model for charged defects in amorphous silicon. Phys. Rev. B 48(15), 10815–10827 (1993)

    Article  Google Scholar 

  14. Kim, J.C., Schwartz, R.J.: Parameter estimation and modeling of hydrogenated amorphous silicon. ECE Technical Reports p. 89 (1996)

  15. Hata, N., Ganguly, G., Wagner, S., Matsuda, A.: Saturation of the defect density in hydrogenated amorphous silicon by pulsed light soaking. Appl. Phys. Lett. 61(15), 1817–1819 (1992)

    Article  Google Scholar 

  16. Wang, F., Schwarz, R.: Comprehensive numerical simulation of defect density and temperature-dependent transport properties in hydrogenated amorphous silicon. Phys. Rev. B 52(20), 14–586 (1995)

    Google Scholar 

  17. Schiff, E.A.: Transport, interfaces, and modeling in amorphous silicon based solar cells. Subcontract report DOE NREL/SR-520-44101 (2008)

  18. Schiff, E.A.: Carrier drift-mobilities and solar cell models for amorphous and nanocrystalline silicon. MRS Proc. 1153, 1153–A15–01 (12 pages) (2009)

  19. Shah, A.V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., Bailat, J.: Thin-film silicon solar cell technology. Prog. Photovolt. 12(2–3), 113–142 (2004)

    Article  Google Scholar 

  20. Sharma, D.K., Narasimhan, K.L., Periasamy, N., Bapat, D.R.: Temperature dependence of the electron drift mobility in doped and undoped amorphous silicon. Phys. Rev. B 44(23), 12806–12808 (1991)

    Article  Google Scholar 

  21. Hossain, M.I., Bousselham, A., Alharbi, F.H.: Numerical analysis of the temperature effects on single junction solar cells efficiencies. In: IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 779–781 (2013)

  22. Aljishi, S., Cohen, J.D., Jin, S., Ley, L.: Band tails in hydrogenated amorphous silicon and silicon-germanium alloys. Phys. Rev. Lett. 64(23), 2811 (1990)

    Article  Google Scholar 

  23. Lechner, R.W.: Silicon nanocrystal films for electronic applications. Ph.D. thesis (2009)

  24. Kamiya, T., Suemasu, A., Watanabe, T., Sameshima, T., Shimizu, I.: Improvement of transport properties for polycrystalline silicon prepared by plasma-enhanced chemical vapor deposition. Appl. Phys. A 73(2), 151–159 (2001)

    Article  Google Scholar 

  25. Moradi, B.: Growth and characterization of polysilicon films deposited by reactive plasma beam epitaxy. Ph.D. thesis (1993)

  26. Scheller, L.P., Nickel, N.H.: Charge transport in polycrystalline silicon thin-films on glass substrates. J. Appl. Phys. 112(1), 13–713 (2012)

    Article  Google Scholar 

  27. Dinh, T., Dao, D.V., Phan, H.P., Wang, L., Qamar, A., Nguyen, N.T., Tanner, P., Rybachuk, M.: Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8(6), 61–303 (2015)

    Article  Google Scholar 

  28. Dutta, R., Banerjee, P.K., Mitra, S.S.: Optical and electrical properties of hydrogenated amorphous silicon carbide. Phys. Status Solidi (b) 113(1), 277–284 (1982)

    Article  Google Scholar 

  29. Janz, S.: Amorphous silicon carbide for photovoltaic applications. Ph.D. thesis (2006)

  30. JUAN, H.A.N.L.: Structural and electrical characterisations of amorphous silicon carbide films. Ph.D. thesis (2005)

  31. Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. Wiley, New York (2001)

    Google Scholar 

  32. Manku, T., McGregor, J.M., Nathan, A., Roulston, D.J., Noel, J.P., Houghton, D.C.: Drift hole mobility in strained and unstrained doped Si 1-x Ge x alloys. IEEE Trans. Electron Devices 40(11), 1990–1996 (1993)

    Article  Google Scholar 

  33. Chen, L., Tauc, J., Lee, J.K., Schiff, E.A.: Defects in hydrogenated amorphous silicon-germanium alloys studied by photomodulation spectroscopy. Phys. Rev. B 43(14), 11–694 (1991)

    Google Scholar 

  34. Frigeri, C., Serényi, M., Szekrényes, Z., Kamarás, K., Csik, A., Khánh, N.Q.: Effect of heat treatments on the properties of hydrogenated amorphous silicon for PV and PVT applications. Sol. Energy 119, 225–232 (2015)

  35. Sze, S.M., Ng, K.K.: Phys. Semicond. Devices. Wiley, New York (2006)

    Book  Google Scholar 

  36. Madan, A.: Thin film amorphous silicon solar cells. Sol. Energy 29(3), 225–233 (1982)

    Article  MathSciNet  Google Scholar 

  37. Zanzucchi, P.J., Wronski, C.R., Carlson, D.E.: Optical and photoconductive properties of discharge-produced amorphous silicon. J. Appl. Phys. 48(12), 5227–5236 (1977)

    Article  Google Scholar 

  38. Azizi, T., Torchani, A., Ben Karoui, M., Gharbi, R., Fathallah, M., Tresso, E.: Effect of defects on the efficiency of a-SiC: H pin based solar cells. In: IEEE International Conference on Electrical Engineering and Software Applications (ICEESA), pp. 1–5 (2013)

  39. Wronski, C.R., Collins, R.W.: Phase engineering of a-Si: H solar cells for optimized performance. Sol. Energy 77(6), 877–885 (2004)

    Article  Google Scholar 

  40. Daliento, S., Lancellotti, L.: 3D analysis of the performances degradation caused by series resistance in concentrator solar cells. Sol. Energy 84(1), 44–50 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Khuzestan Regional Electric Company, Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabbar Ganji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganji, J., Kosarian, A. & Kaabi, H. Numerical modeling of thermal behavior and structural optimization of a-Si:H solar cells at high temperatures. J Comput Electron 15, 1541–1553 (2016). https://doi.org/10.1007/s10825-016-0913-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0913-3

Keywords

Navigation