Skip to main content
Log in

Mathematical modelling of a novel heterojunction SIS front surface and interdigitated back-contact solar cell

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we propose the design and fabrication of a novel heterojunction semiconductor–insulator–semiconductor (SIS) front surface and interdigitated back-contact (IBC) solar cell. We approximate the performance parameters and loss analysis of the proposed solar cell using MATLAB software programming. Many studies have reported the experimental analysis of amorphous silicon (a-Si) IBC solar cells. A number of silicon heterojunction solar cell designs with promising efficiency have been reported in the past few decades. In this study, a long-lifetime (~ 2 ms) n-Si substrate was considered so that a sufficient number of photogenerated carriers could reach the interdigitated layer and be absorbed. The availability of carriers at the interdigitated back surface was further enhanced by considering a high-low junction created by a ZnO n+ layer at the front surface. A very thin layer of thermally deposited insulator SiO2 was considered between the ZnO and n-Si. This layer reduces the detrimental effects of interface defects. This is the first study in which we have theoretically investigated an IBC solar cell using metal oxide semiconductor layer deposition, thereby avoiding the expensive and complicated doping and diffusion process. In general, a high-concentration n+ layer is doped to create a high-low junction at the front to accelerate the transport of carriers to the back junctions. We propose a cost-effective method using thermal deposition of a SiO2 layer followed by sol–gel ZnO layer deposition, which serves the same purpose as an n+ layer by introducing an SIS junction potential at the front. The interdigitated back surface was designed with sequential n+ a-Si and p+ a-Si vertical junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Fig. 17

Similar content being viewed by others

Data and material availability

Available with authors.

Code availability

Available with authors

References

  1. Schwartz R. J., Lammert, M. D.: Silicon solar cells for high concentration applications. In: 1975 International electron devices meeting, Washington, DC, USA, pp. 350-352 (1975)

  2. Diouf, D., Kleider, J., Desrues, T., Ribeyron, P.-J.: Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. Energy Proced. 2, 59–64 (2010)

    Article  Google Scholar 

  3. Bao, J., Liu, A., Lin, Y., Zhou, Y.: An insight into effect of front surface field on the performance of interdigitated back contact silicon heterojunction solar cells. Mater. Chem. Phys. 255, 123625 (2020)

    Article  Google Scholar 

  4. Dasgupta, K., Ray, S., Mondal, A., Gangopadhyay, U.: Performance analysis of crystalline-Si solar cell using MATLAB simulation. Mater. Today: Proc. 39(5), 1894–1898 (2021)

    Google Scholar 

  5. Dasgupta, K., Mondal, A., Ray, S. et al. Mathematical modelling of a novel hetero-junction dual SIS ZnO-Si-SnO solar cell. Silicon (2021). https://doi.org/10.1007/s12633-021-01090-8

    Article  Google Scholar 

  6. Dey, B. K., Khan I., Mandal N., Bhattacharjee A.:Mathematical modelling and characteristic analysis of Solar PV Cell. In: 2016 IEEE 7th annual information technology, electronics and mobile communication conference (IEMCON), 2016, pp. 1-5

  7. M. F. Nayan and S. M. S. Ullah, "Modelling of solar cell characteristics considering the effect of electrical and environmental parameter. In: 2015 3rd international conference on green energy and technology (ICGET), 2015, pp. 1–6

  8. Lammert, M.D., Schwartz, R.J.: The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight. IEEE Trans. Electron Devices 24(4), 337–342 (1977)

    Article  Google Scholar 

  9. Kim, S.M., Chun, S., Kang, M.G., Song, H.-E., Lee, J.-H., Boo, H., Bae, S., Kang, Y., Lee, H.-S., Kim, D.: Simulation of interdigitated back contact solar cell with trench structure. J. Appl. Phys. 117, 074503 (2015)

    Article  Google Scholar 

  10. Diouf, D., Kleider, J., Desrues, T., Ribeyron, P.-J.: Study of interdigitated back contact silicon heterojunctions solar cells by two-dimensional numerical simulations. Mater. Sci. Eng., B 159–160, 291–294 (2009)

    Article  Google Scholar 

  11. Ghosh, R., Paul, G.K., Basak, D.: Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol–gel ZnO thin films. Mater. Res. Bull. 40(11), 1905–1914 (2005)

    Article  Google Scholar 

  12. Hussain, B., Aslam, A., Khan, T.M., Creighton, M., Zohuri, B.: Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8, 238 (2019)

    Article  Google Scholar 

  13. Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F., Steiner, T.: ZnO growth doping & processing. Mater. Today 7(6), 34–40 (2004)

    Article  Google Scholar 

  14. Ondo-Ndong, R., Essone-Obame, H., Moussambi, Z.H., et al.: Capacitive properties of zinc oxide thin films by radiofrequency magnetron sputtering. J. Theor. Appl. Phys. 12, 309–317 (2018)

    Article  Google Scholar 

  15. Liehr, M., Lewis, J.E., Rubloff, G.W.: Kinetics of high-temperature thermal decomposition of SiO2 on Si(100). J. Vac. Sci. Technol., A 5, 1559–1562 (1987)

    Article  Google Scholar 

  16. Nichiporuk, O., Kaminski, A., Lemiti, M., Fave, A., Skryshevsky, V.: Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation. Sol. Energy Mater. Sol. Cells 86, 517–526 (2005)

    Article  Google Scholar 

  17. Fahrner, W.R. (ed.): Amorphous silicon / crystalline silicon heterojunction solar cells springer briefs in applied sciences and technology. Springer-Verlag, Berlin Heidelberg (2013)

    Google Scholar 

  18. Bateman, N., Sullivan, P., Reichel, C., Benick, J., Hermle, M.: High quality ion implanted boron emitters in an interdigitated back contact solar cell with 20% efficiency. Energy Proced. 8, 509–514 (2011)

    Article  Google Scholar 

  19. Schaper, M., Schmidt, J., Plagwitz, H., Brendel, R.: 20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation. Prog. Photovolt: Res. Appl. 13, 381–386 (2005)

    Article  Google Scholar 

  20. McIntosh, K. R., Honsberg, C. The influence of edge recombination on a solar cell's Iv curve (2000)

  21. Muller, R.S., Kamins, T.I.: Device electronics for integrated circuits, 3rd Edition, October 2002

  22. Markvart, T., Castañer, L.: Chapter IA-2  Practical Handbook of Photovoltaics, p. 95–121, Elsevier Science, 2003. https://doi.org/10.1016/B978-1-85617-390-2.X5000-4

  23. Dasgupta, K., Ray, S., Mondal, A., Gangopadhyay, U.: Review on different front surface modification of both n+-p-p+ and p+-n-n+ C- Si solar cell. Mater. Today: Proc. 4(14), 12698–12707 (2017)

    Google Scholar 

  24. Ray, S., Mondal, A., Gangopadhyay, U.: Optimization and characterization of silicon nano-grass antireflection layer on textured silicon wafer. Appl. Phys. A 126, 399 (2020)

    Article  Google Scholar 

  25. Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovolt: Res. Appl. 3, 189–192 (1995)

    Article  Google Scholar 

  26. Donolato, C.: A reciprocity theorem for charge collection. Appl. Phys. Lett. 46, 270–272 (1985)

    Article  Google Scholar 

  27. Donolato, C.: Reciprocity theorem for charge collection by a surface with finite collection velocity: application to grain boundaries. J. Appl. Phys. 76, 959–966 (1994)

    Article  Google Scholar 

  28. Pauwels, H.J., de Visschere, P.: Influence of an insulating layer on the efficiency of a semiconductor-insulator-semiductor (SIS) heterojunction solar cell. Solid-State Electron. 21(4), 693–698 (1978)

    Article  Google Scholar 

  29. Shousha, A.H.M.: Performance characteristics of thin film mis solar cells. Sol. Wind Technol. 6(6), 705–712 (1989)

    Article  Google Scholar 

  30. Ray, S., Pal, B., Ghosh, H., et al.: Effect of induced charges on the performance of different dielecteric layers of c-Si solar cell by experimental and theoretical approach. Silicon 12, 2601–2609 (2020)

    Article  Google Scholar 

  31. Schroder, D.K., Meier, D.L.: Solar cell contact resistance—a review. IEEE Trans. Electron Devices 31(5), 637–647 (1984)

    Article  Google Scholar 

  32. Roy, S., Gupta, R.: Quantitative estimation of shunt resistance in crystalline silicon photovoltaic modules by electroluminescence imaging. IEEE J. Photovolt 9(6), 1741–1747 (2019)

    Article  Google Scholar 

  33. Znaidi, L.: Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng., B 174(1–3), 18–30 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Meghnad Saha Institute of Technology for providing us with MATLAB software for simulation.

Funding

No institutional funding was used.

Author information

Authors and Affiliations

Authors

Contributions

Kaustuv Dasgupta: Manuscript writing, theoretical analysis, coding, results analysis. Utpal Gangopadhyay: Ideation, supervision, data analysis. Anup Mondal: Supervision, data correction. Soma Ray: Technical support, data analysis.

Corresponding author

Correspondence to Kaustuv Dasgupta.

Ethics declarations

Conflicts of interest

The author declare that they have no conflict of interest.

Consent to participate

This article does not contain any studies involving human participants performed by any of the authors.

Consent for publication

We give our consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in the Silicon, Springer. Therefore, anyone can read material published in the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a
figure b
figure c
figure d
figure e
figure f
figure g
figure h
figure i
figure j
figure k
figure l
figure m

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, K., Mondal, A., Ray, S. et al. Mathematical modelling of a novel heterojunction SIS front surface and interdigitated back-contact solar cell. J Comput Electron 20, 1779–1806 (2021). https://doi.org/10.1007/s10825-021-01735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01735-2

Keywords

Navigation