Skip to main content
Log in

Synthesis and Characterization of Nano CoFe2O4 Prepared by Sol-Gel Auto-Combustion with Ultrasonic Irradiation and Evaluation of Photocatalytic Removal and Degradation Kinetic of Reactive Red 195

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A combination of sol-gel auto-combustion and ultrasonic irradiation methodswere developed for fabrication of CoFe2O4nanoparticles using aqueous solution of Co(NO3)2.6H2O and Fe(NO3)3.9H2O with glycine as chelating agent under nitrogen atmosphere. CoFe2O4 nano-particles werecoated on glass by Doctor Blade method. The precursor powders were analyzed by thermogravimetry (TG) and differential thermogravimetry (DTG). The structural, optical and the chemical features of the nano-particles have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–Vis diffuse reflectance spectroscopy (DRS).The results of TG-DTG indicated that the CoFe2O4nano-particles have a very good thermal stability. Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The morphological and optical properties of the cobalt ferrite were found to be depended on ultrasonic irradiation. Nanoparticles prepared with ultrasonic irradiation have diameter of about 46 nmwith spherical morphology and narrow size distribution and nanoparticles prepared without ultrasonic irradiation is about 57 nm. The photocatalytic activity of the immobilizedcobalt ferrite nanocomposite was studied on Reactive Red 195 (RR195) as an azo textile dye used textile industries and the results showed about 74% degradation in less than 2 h. The photocatalytic activity of CoFe2O4nanoparticles is attributed to band gap energy and small particle size. The coated cobalt ferrite nanocomposite with a reproducible photocatalytic activity was well separable from water media by removing the glass coated with thin film and acted as a promising catalyst for the remediation of textile wastewater. Degradation of Reactive Red 195 by cobalt ferrite nanocomposite coated on glass follows second order rate kinetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ianosn R, Bosca M, Lazau R (2014) Fine tuning of CoFe 2 O 4 properties prepared by solution combustion synthesis. Ceram Inter 40:10223–10229

    Article  CAS  Google Scholar 

  2. Habibi MH, Parhizkar HJ (2014) FTIR and UV–vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe 2 O 4 from CoCl 2 and FeCl 3. Spectrochim Acta A 127:102–106

    Article  CAS  Google Scholar 

  3. Xingbin Y, Jiangtao C, Qunji X, Philippe M (2010) Synthesis and magnetic properties of CoFe 2 O 4 nanoparticles confined within mesoporous silica. Micropor Mesopor Mat 135:137–142

    Article  CAS  Google Scholar 

  4. Habibi MH, Rahmati MH (2015) The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO–CdS core–shell nano-structure coated on glass by Doctor Blade method. Spectrochim Acta A 137:160–164

    Article  CAS  Google Scholar 

  5. Jing W, Tong D, Yulong L, Caiqin Y, Wenhong Z (2008) Synthesis and characterization of CoFe 2 O 4 magnetic particles prepared by co-precipitation method: effect of mixture procedures of initial solution. J Alloys Compd 450:532–539

    Article  CAS  Google Scholar 

  6. Habibi MH, Rahmati MH (2014) Fabrication and characterization of ZnO@ CdS core–shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap. Spectrochim Acta A 133:13–18

    Article  CAS  Google Scholar 

  7. Xing-Hua L, Cai-Ling X, Xiang-Hua H, Liang Q, Tao W, Fa-Shen L (2010) Synthesis and magnetic properties of nearly monodisperse CoFe 2 O 4 nanoparticles through a simple hydrothermal condition. Nanoscale Res Lett 5:1039–1044

    Article  CAS  Google Scholar 

  8. Habibi MH, Rezvani Z (2014) Nanostructure copper oxocobaltate fabricated by co-precipitation route using copper and cobalt nitrate as precursors: Characterization by combined diffuse reflectance and FT infrared spectra. Spectrochim Acta A 130:309–312

    Article  CAS  Google Scholar 

  9. Habibi MH, Karimi B (2014) Nanostructure Cu–Zn mixed-oxide supported photocatalyst fabricated by impregnation method for the photocatalytic degradation of CI Reactive Orange 16 (V3R) in water. Spectrochim Acta A 124:629–631

    Article  CAS  Google Scholar 

  10. Salunkhe AB, Khot VM, Thorat ND, Phadatare MR, Satish CI, Dhawale DS, Pawar SH (2013) Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl Surf Sci 264:598–604

    Article  CAS  Google Scholar 

  11. Habibi MH, Karimi B (2015) Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B. Spectrochim Acta A 137:785–789

    Article  CAS  Google Scholar 

  12. Chao L, Rondinone AJ, Zhang ZJ (2000) Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl Chem 72:37–45

    Article  Google Scholar 

  13. Ilkhechi NN, Alijani M (2016) Optical and structural properties of TiO2 nanopowders with Co/Ce doping at various temperature. Opt Quant Electron 48:148–156

    Article  CAS  Google Scholar 

  14. Ilkhechi NN, Koozegar-Kaleji B (2015) Optical and structural properties of tenorite nanopowders doped by Si and Zr. Opt Quant Electron 47:633–642

    Article  CAS  Google Scholar 

  15. Ilkhechi NN, Koozegar-Kaleji B (2015) Optical and structural properties of tenorite nanopowders doped by Si and Zr. Opt Quant Electron 47:633–642

    Article  CAS  Google Scholar 

  16. Ilkhechi NN, Ahmadi A (2015) Optical and structural properties of nanocrystalline anatase powders doped by Zr, Si and Cu at high temperature. Opt Quant Electron 47:2423–2434

    Article  CAS  Google Scholar 

  17. Ilkhechi NN, Kaleji BK (2016) Effect of Cu2+, Si4 + and Zr4+ dopant on structural, optical and photocatalytic properties of titania nanopowders. Opt Quant Electron 48:347–355

    Article  CAS  Google Scholar 

  18. Ilkhechi NN, Ghobadi N (2016) Comparison of structural, optical, photocatalytic behavior and hydrophilic properties of pure and Sn/La co-doped TiO2 thin Films. J Mater Sci Mater Electron 27:12050–12059

    Article  CAS  Google Scholar 

  19. Ilkhechi NN, Kaleji BK (2017) Temperature stability and photocatalytic activity of nanocrystalline cristobalite powders with Cu dopant. Silicon 9:943–948

    Article  CAS  Google Scholar 

  20. Habibi MH, Karimi B, Zendehdel M, Habibi M (2014) Preparation of nanostructure mixed copper-zinc oxide via co-precipitation rout for dye-sensitized solar cells: the influence of blocking layer and Co (II)/Co (III) complex redox shuttle. Spectrochim Acta A 20:1462–1467

    CAS  Google Scholar 

  21. Unyong J, Xiaowei T, Yong W, Hong Y, Younan X (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60

    Article  CAS  Google Scholar 

  22. Habibi MH, Karimi B, Zendehdel M, Habibi M (2013) Fabrication, characterization of two nano-composite CuO–ZnO working electrodes for dye-sensitized solar cell. Spectrochim Acta A 116:374–380

    Article  CAS  Google Scholar 

  23. Fereydouni M, Sabbaghi1 S, Saboori R, Zeinali S (2012) Effect of polyanionic cellulose polymer nanoparticles on rheological properties of drilling mud. Int J Nanosci Nanotechnol 8:171– 174

  24. Jafari V, Allahverdi A (2014) Synthesis and characterization of colloidal nanosilica via an ultrasound assisted route based on alkali leaching of silica fume. Int J Nanosci Nanotechnol 10:145–152

    Google Scholar 

  25. Foroutan T (2015) The effects of zinc oxide nanoparticles on differentiation of human mesenchymal stem cells to osteoblast. Nanomed J 1:308–314

    Google Scholar 

  26. Tohidi SH, Novinrooz AJ, Derhambakhsh M, Grigoryan GL (2012) Dependence of spectroscopic properties of copper oxide based silica supported nanostructure on temperature. Int J Nanosci Nanotechnol 8:143–148

    Google Scholar 

  27. Ilkhechi NN, Azar Z (2016) Enhanced structural, optical and super-hydrophilic properties of TiO2 thin film co-doped by V and Sn. J Mater Sci Mater Electron 27:10541–10549

    Article  CAS  Google Scholar 

  28. Ilkhechi NN, Ghorbani M (2017) The optical, photo catalytic behavior and hydrophilic properties of silver and tin co doped TiO2 thin films using sol–gel method. J Mater Sci Mater Electron 28:3571–3580

    Article  CAS  Google Scholar 

  29. Habibi MH, Askari E (2013) Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell. Spectrochim Acta A 104:197–202

    Article  CAS  Google Scholar 

  30. Habibi MH, Sheibani R (2013) Nanostructure silver-doped zinc oxide films coating on glass prepared by sol–gel and photochemical deposition process: application for removal of mercaptan. J Ind Eng Chem 19:161–165

    Article  CAS  Google Scholar 

  31. Calero-DdelC VL, Rinaldi C (2007) Synthesis and magnetic characterization of cobalt-substituted ferrite (CoxFe 3- xO 4) nanoparticles. J Magn Magn Mater 314:60–67

    Article  CAS  Google Scholar 

  32. Suslick S (1988) Ultrasound: its chemical, physical, and biological effects. VCH Publishers K., New York

    Google Scholar 

  33. Silva ACA, Gratens X, Chitta VA, Franco SD, da Silva RS, Condeles JF, Dantas NO (2014) Effects of ultrasonic agitation on the structural and magnetic properties of CoFe2O4 nanocrystals. Eur J Inorg Chem, 5603–5608

  34. Tedesco AC, Oliveira DM, Lacava ZGM, Azevedo RB, Lima ECD, Morais PC (2004) Investigation of the binding constant and stoichiometry of biocompatible cobalt ferrite-based magnetic fluids to serum albumin. J Magn Magn Mat 272:2404–2405

    Article  CAS  Google Scholar 

  35. Song O, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168

    Article  CAS  PubMed  Google Scholar 

  36. Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan MP, Philip J, Raj B (2010) Influence of Co2 + ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J Phys Chem C 114:6334–6341

    Article  CAS  Google Scholar 

  37. Peddis D, Mansilla MV, Morup S, Cannas C, Musinu A, Piccaluga G, DOrazio F, Lucari F, Fiorani D (2008) Spin-canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles. J Phys Chem B 112:8507–8513

    Article  CAS  PubMed  Google Scholar 

  38. Banerjee Y, Katsenovich L, Lagos M, McIintosh X, Zhang C, Li Z (2010) Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem 17:3120–3141

    Article  CAS  PubMed  Google Scholar 

  39. Zhao LJ, Zhang HJ, Xing Y, Song SY, Yu SY, Shi WD, Guo XM, Yang JH, Lei YQ, Cao F (2008) Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J Solid State Chem 181:245–252

    Article  CAS  Google Scholar 

  40. Meron T, Rosenberg Y, Lereah Y, Markovich G (2005) Synthesis and assembly of high-quality cobalt ferrite nanocrystals prepared by a modified sol–gel technique. J Magn Magn Mater 292:11– 16

    Article  CAS  Google Scholar 

  41. Rana S, Philip J, Raj B (2010) Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater Chem Phys 124:264–269

    Article  CAS  Google Scholar 

  42. Coker VS, Telling ND, van der Laan G, Pattrick RAD, Pearce CI, Arenholz E, Tuna F, Winpenny REP, Lloyd JR (2009) Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. Acs Nano 3:1922–1928

    Article  CAS  PubMed  Google Scholar 

  43. Ayyappan J, Raj BP (2008) Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J Phys Chem C 113:590–596

    Article  CAS  Google Scholar 

  44. Briceno S, Bramer-Escamilla W, Silva P, Delgado GE, Plaza E, Palacios J, Canizales E (2012) Effects of synthesis variables on the magnetic properties of CoFe 2 O 4 nanoparticles. J Magn Magn Mater 324:2926–2931

    Article  CAS  Google Scholar 

  45. Soler MAG, Lima ECD, da Silva SW, Melo TFO, Pimenta ACM, Sinnecker JP, Azevedo RB, Garg VK (2014) Effects of ultrasonic agitation on the structural and magnetic properties of CoFe2O4 nanocrystals. Eur J Inorg Chem, pp 5603–5608

  46. Ahmed AS, Shafeeq MM, Singla ML, Tabassum S, Naqvi AH, Azam A (2010) Band gap narrowing and fluorescence properties of nickel doped SnO 2 nanoparticles. J Lumin 131:1–6

    Article  CAS  Google Scholar 

  47. Shoeb M, Singh BR, Khan JA, Khan W, Singh BN, Singh HB, Naqvi AH (2013) ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Adv Nat Sci: Nanosci Nanotechnol 4:035015

    Google Scholar 

  48. Nouroozi F, Farzaneh F (2011) Synthesis and characterization of brush-like ZnOnanorods using albumen as biotemplate. J Braz Chem Soc 22(3):484–488

    Article  CAS  Google Scholar 

  49. Tauc J (1974) Optical properties of amorphous semiconductors, amorphous and liquid semiconductors. Plenum Press, New York, p 171

    Book  Google Scholar 

  50. Ansari SA, Nisar A, Fatma B, Khan W, Naqvi AH (2012) Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater Sci Eng B 177:428–435

    Article  CAS  Google Scholar 

  51. Zhong M, Fei P, Fu X, Lei Z, Su B (2013) Synthesis of PS–CoFe2O4 composite nanomaterial with improved magnetic properties by a one-step solvothermal method. Ind Eng Chem Res 52:8230–8235

    Article  CAS  Google Scholar 

  52. Jiang W, Qiu Z, Yao W, Zhu Y, Cui W (2017) TiO 2/Al (H 2 PO4) 3 composite film as separation-free and washing-resistance photocatalyst. Appl Catal B 204:43–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Isfahan for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janan Parhizkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhizkar, J., Habibi, M.H. & Mosavian, S.Y. Synthesis and Characterization of Nano CoFe2O4 Prepared by Sol-Gel Auto-Combustion with Ultrasonic Irradiation and Evaluation of Photocatalytic Removal and Degradation Kinetic of Reactive Red 195. Silicon 11, 1119–1129 (2019). https://doi.org/10.1007/s12633-018-9922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9922-0

Keywords

Navigation