Skip to main content
Log in

Optimization of Preparation Conditions to Control Structural Characteristics of Silicon Dioxide Nanostructures Prepared by Magnetron Plasma Sputtering

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, highly-pure silicon oxide nanostructures were prepared by a closed-field unbalanced magnetron plasma sputtering technique. These nanostructures were characterized by Fourier-transform infrared spectroscopy, UV-visible spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy and atomic force microscopy in order to determine the optimum preparation conditions. Minimum particle size of 20 nm was determined for the samples prepared at an inter-electrode distance of 4 cm, Ar:O2 gas mixing ratio of 70:30, total gas pressure of 0.08 torr, discharge voltage of 2.5 kV, discharge current of 35 mA, anode temperature of 27 C (room temperature) and cathode temperature of about 40 C. These conditions are optimized to control the structural characteristics of such nanostructures and hence to satisfy certain requirements and purposes in spectroscopic and photonic applications of SiO2 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan P (1985) The composition and properties of PECVD silicon oxide films. J Electrochem Soc 132:2012–2019

    Article  CAS  Google Scholar 

  2. Al-Dhafiri AM (2009) High-quality plasma-induced crystallization of amorphous silicon structures. Iraqi J Appl Phys 5(1):35–39

    Google Scholar 

  3. Hammadi OA (2016) Characteristics of heat-annealed silicon homojunction infrared photodetector fabricated by plasma-assisted technique. Phot Sens 6(4):345–350. https://doi.org/10.1007/s13320-016-0338-4

    Article  CAS  Google Scholar 

  4. Choi J-K, Kim D, Lee J, Yoo J-B (2000) Effects of process parameters on the growth of thick SiO2 using plasma enhanced chemical vapor deposition with hexamethyldisilazane. Surf Coat Technol 131:136–140

    Article  CAS  Google Scholar 

  5. Bang SB, Chung TH, Kim Y, Kang MS, Kim JK (2004) Effects of the oxygen fraction and substrate bias power on the electrical and optical properties of silicon oxide films by plasma enhanced chemical vapour deposition using TMOS/O2 gas. J Phys D: Appl Phys 37:1679–1684

    Article  CAS  Google Scholar 

  6. Mahajan AM, Patil LS, Bange JP, Gautam DK (2004) Growth of SiO2 films by TEOS-PECVD system for microelectronics applications. Surf Coat Technol 183:295–300

    Article  CAS  Google Scholar 

  7. Jung H, Kim WH, Oh IK, Lee CW, Lansalot-Matras C, Lee SJ, Myoung JM, Ram Lee HB, Kim H (2016) Growth characteristics and electrical properties of SiO2 thin films prepared using plasma-enhanced atomic layer deposition and chemical vapor deposition with an aminosilane precursor. J Mater Sci 51(11):5082–5091. https://doi.org/10.1007/s10853-016-9811-0

    Article  CAS  Google Scholar 

  8. Bange JP, Patil LS, Gautam DK (2008) Growth and characterization of SiO2 films deposited by flame hydrolysis deposition system for photonic device application. Prog Electromagn Res M 3:165–175

    Article  Google Scholar 

  9. Lee S-W, Park K, Han B, Son S-H, Rha S-K, Park C-O, Lee W-J (2008) Atomic layer deposition of silicon oxide thin films by alternating exposures to Si2Cl6 and O3. Electrochem Solid State Lett 11:G23–G26

    Article  CAS  Google Scholar 

  10. Klaus JW, Sneh O, Ott AW, George SM (1999) Atomic layer deposition of SiO2 using catalyzed and uncatalyzed selflimiting surface reactions. Surf Rev Lett 6:435–448

    Article  CAS  Google Scholar 

  11. Tabata A, Matsuno N, Suzuoki Y, Mizutani T (1996) Optical properties and structure of SiO2 films prepared by ion-beam sputtering. Thin Solid Films 289:84–89

    Article  CAS  Google Scholar 

  12. Kadhim FJ, Chiad BT, Ali NA, Odah JF (2015) Synthesis and spectroscopic properties of silica nanoparticles as scatter centers in random gain porous media. J Sol-Gel Sci Technol 75(2):247–254. https://doi.org/10.1007/s10971-015-3740-2

    Article  CAS  Google Scholar 

  13. Issa AA (2014) The effect of annealing on nano-topography of SiO2 film. Raf J Sci 25(2):74–86

    Google Scholar 

  14. Yee ATS (2008) Synthesis of silicon nanowires by selective etching process. Iraqi J Appl Phys 4(3):15–17

    Google Scholar 

  15. Jaafer HI, Muslem ZR (2012) Effect of nano and micro SiO2 weight percent on interlaminar fracture toughness of woven roving/epoxy composites. Iraqi J Phys 10(18):117–121

    Google Scholar 

  16. Hiller D, Zierold R, Bachmann J, Alexe M, Yang Y, Gerlach JW, Stesmans A, Jivanescu M, Müller U, Vogt J, Hilmer H, Löper P, Künle M, Munnik F, Nielsch K, Zacharias M (2010) Low temperature silicon dioxide by thermal atomic layer deposition: investigation of material properties. J Appl Phys 107:064314–1–064314-10

    Google Scholar 

  17. Hammadi OA (2015) Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications. Phot Sens 5(2):152–158. https://doi.org/10.1007/s13320-015-0241-4

    Article  CAS  Google Scholar 

  18. Hamadi OA (2008) Effect of annealing on the electrical characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Iraqi J Appl Phys 4(3):34–37

    Google Scholar 

  19. Kamiyama S, Miura T, Nara Y (2006) Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors. Thin Solid Films 515:1517–1521

    Article  CAS  Google Scholar 

  20. Klaus JW, George SM (2000) Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions. Surf Sci 447:81–90

    Article  CAS  Google Scholar 

  21. Klaus JW, Ott AW, Johnson JM, George SM (1997) Atomic layer controlled growth of SiO2 films using binary reaction sequence chemistry. Appl Phys Lett 70:1092–1094

    Article  CAS  Google Scholar 

  22. Chen Y, Jin G (2006) Refractive index and thickness analysis of natural silicon dioxide film growing on silicon with variable-angle spectroscopic ellipsometry. Spectroscopy 21(10):27–31

    CAS  Google Scholar 

  23. Hamadi OA (2008) Characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Proc IMechE Part L: J Mater Des Appl 222:65–71

    CAS  Google Scholar 

  24. Hammadi OA, Naji NE (2016) Electrical and spectral characterization of CdS/Si heterojunction prepared by plasma-induced bonding. Opt Quantum Electron 48(8):1–7. https://doi.org/10.1007/s11082-016-0647-2

    Article  CAS  Google Scholar 

  25. Hammadi OA (2016) Characterization of SiC/Si heterojunction fabricated by plasma-induced growth of nanostructured silicon carbide layer on silicon surface. Iraqi J Appl Phys 12(2):9–13

    Google Scholar 

  26. Yousif AK, Hamadi OA (2008) Plasma-induced etching of silicon surfaces. Bulg J Phys 35(3):191–197

    CAS  Google Scholar 

  27. Suzuki I, Dussarrat C, Yanagita K (2007) Extra low-temperature SiO2 deposition using aminosilanes. ECS Trans 3:119–128

    Article  CAS  Google Scholar 

  28. Sulaiman ST, Al-Jammal YN, Issa AA (2012) The growth and investigation of interface of SiO2/Si by anodic oxidation technique using acetic acid medium. Raf J Sci 23(4):117–126

    Google Scholar 

  29. Croci S, Pecheur A, Autran JL, Vedda A, Caccavale F, Martini M, Spinolo G (2001) SiO2 films deposited on silicon at low temperature by plasma-enhanced decomposition of hexamethyldisilazane: defect characterization. J Vac Sci Technol A 19:2670–2675

    Article  CAS  Google Scholar 

  30. Alexandrov SE, McSporran N, Hitchman ML (2005) Remote AP-PECVD of silicon dioxide films from hexamethyldisiloxane (HMDSO). Chem Vap Depos 11:481–490

    Article  CAS  Google Scholar 

  31. Inoue Y, Takai O (1996) Spectroscopic studies on preparation of silicon oxide films by PECVD using organosilicon compounds. Plasma Sourc Sci Technol 5:339–343

    Article  CAS  Google Scholar 

  32. Lee JH, Jeong CH, Lim JT, Jo NG, Kyung SJ, Yeom GY (2005) Characteristic of SiO2 films deposited by using low temperature PECVD with TEOS/N2/O2. J Korean Phys Soc 46:890– 894

    CAS  Google Scholar 

  33. Wu WF, Chiou BS (1996) Optical and mechanical properties of reactively sputtered silicon dioxide films. Semicond Sci Technol 11:1317–1321

    Article  CAS  Google Scholar 

  34. Lee J-H, Kim U-J, Han C-H, Rha S-K, Lee W-J, Park C-O (2004) Investigation of silicon oxide thin films prepared by atomic layer deposition using SiH2Cl2 and O3 as the precursors. Jpn J Appl Phys 43:L328–L330

    Article  CAS  Google Scholar 

  35. Zayed SM, Alshimy AM, Fahmy AE (2014) Effect of surface treated silicon dioxide nanoparticles on some mechanical properties of maxillofacial silicone elastomer. Int J Biomater article 750398. https://doi.org/10.1155/2014/750398

  36. Tamura T, Ishibashi S, Tanaka S, Kohyama M, Lee MH (2008) First-principles analysis of optical absorption edge in pure and fluorine-doped SiO2 glass. Comput Mater Sci 44:61–66

    Article  CAS  Google Scholar 

  37. Hameed MA, Jabbar ZM (2016) Preparation and characterization of silicon dioxide nanostructures by dc reactive closed-field unbalanced magnetron sputtering. Iraqi J Appl Phys 12(4):13–18

    Google Scholar 

  38. Anber AA, Kadhim FJ (2017) Preparation of nanostructured Six N 1−x thin films by DC reactive magnetron sputtering for tribology applications. Silicon. https://doi.org/10.1007/s12633-016-9535-4

  39. Hammadi OA, Khalaf MK, Kadhim FJ (2015) Fabrication and characterization of UV photodetectors based on silicon nitride nanostructures prepared by magnetron sputtering. Proc IMechE Part N: J Nanoeng Nanosyst 230 (1):32–36. https://doi.org/10.1177/1740349915610600

    Google Scholar 

  40. Hammadi OA, Khalaf MK, Kadhim FJ (2015) Fabrication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques. Opt Quantum Electron 47(2):1–9. https://doi.org/10.1007/s11082-015-0247-6

    Google Scholar 

  41. Hammadi OA, Khalaf MK, Kadhim FJ (2015) Silicon nitride nanostructures prepared by reactive sputtering using closed-field unbalanced dual magnetrons. Proc IMechE Part L:. J Mater Des Appl 231(5):479–487. https://doi.org/10.1177/1464420715601151

    Google Scholar 

  42. Hammadi OA, Khalaf MK, Kadhim FJ, Chiad BT (2014) Operation characteristics of a closed-field unbalanced dual-magnetrons plasma sputtering system. Bulg J Phys 41(1):24–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Hameed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, M.A., Jabbar, Z.M. Optimization of Preparation Conditions to Control Structural Characteristics of Silicon Dioxide Nanostructures Prepared by Magnetron Plasma Sputtering. Silicon 10, 1411–1418 (2018). https://doi.org/10.1007/s12633-017-9618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9618-x

Keywords

Navigation