Skip to main content

Advertisement

Log in

Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol-gel method and in-situ hydrogen reduction. The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100–200 nm. The addition of nanosized W particles remarkably improves the mechanical properties, while the electrical conductivity did not substantially decrease. The Cu-W composite with 6wt% W has the most comprehensive properties with an ultimate strength of 310 MPa, yield strength of 238 MPa, hardness of HV 108 and electrical conductivity of 90% IACS. The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Li, B.G. Thomas, and J.F. Stubbins, Modeling creep and fatigue of copper alloys, Metall. Mater. Trans. A, 31(2000), No. 10, p. 2491.

    Article  Google Scholar 

  2. G Carro, A Muñoz, M.A. Monge, B Savoini, R Pareja, C Ballesteros, and P. Adeva, Fabrication and characterization of Y2O3 dispersion strengthened copper alloys, J. Nucl. Mater., 455(2014), No. 1–3, p. 655.

    Article  CAS  Google Scholar 

  3. S.J. He, Y.B. Jiang, J.X. Xie, Y.H. Li, and L.J. Yue, Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 641.

    Article  CAS  Google Scholar 

  4. J Groza, Heat-resistant dispersion-strengthened copper alloys, J. Mater. Eng. Perform., 1(1992), No. 1, p. 113.

    Article  CAS  Google Scholar 

  5. E Karakulak, Characterization of Cu-Ti powder metallurgical materials, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 83.

    Article  CAS  Google Scholar 

  6. D.W. Lee and B.K. Kim, Nanostructured Cu-Al2O3 composite produced by thermochemical process for electrode application, Mater. Lett., 58(2004), No. 3–4, p. 378.

    Article  CAS  Google Scholar 

  7. A Wagih and A. Fathy, Improving compressibility and thermal properties of Al-Al2O3 nanocomposites using Mg particles, J. Mater. Sci., 53(2018), No. 16, p. 11393.

    Article  CAS  Google Scholar 

  8. C Suryanarayana and N. Al-aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci., 58(2013), No. 4, p. 383.

    Article  CAS  Google Scholar 

  9. S.J. Hwang and J.H. Lee, Mechanochemical synthesis of Cu-Al2O3 nanocomposites, Mater. Sci. Eng. A, 405(2005), No. 1–2, p. 140.

    Article  Google Scholar 

  10. S.M.S. Aghamiri, N Oono, S Ukai, R Kasada, H Noto, Y Hishinuma, and T. Muroga, Brass-texture induced grain structure evolution in room temperature rolled ODS copper, Mater. Sci. Eng. A, 749(2019), p. 118.

    Article  CAS  Google Scholar 

  11. A Abu-Oqail, A Wagih, A Fathy, O Elkady, and A.M. Kabeel, Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites, Ceram. Int., 45(2019), No. 5, p. 5866.

    Article  CAS  Google Scholar 

  12. A Wagih, A Abu-Oqail, and A. Fathy, Effect of GNPs content on thermal and mechanical properties of a novel hybrid Cu-Al2O3/GNPs coated Ag nanocomposite, Ceram. Int., 45(2019), No. 1, p. 1115.

    Article  CAS  Google Scholar 

  13. M Baghani, M Aliofkhazraei, and M. Askari, Cu-Zn-Al2O3 nanocomposites: study of microstructure, corrosion, and wear properties, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 462.

    Article  CAS  Google Scholar 

  14. M Baghani and M. Aliofkhazraei, CuCrW(Al2O3) nano-composite: mechanical alloying, microstructure, and tribo-logical properties, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1321.

    Article  CAS  Google Scholar 

  15. F Chi, M Schmerling, Z Eliezer, H.L. Marcus, and M.E. Fine, Preparation of Cu-TiN alloy by external nitridation in combination with mechanical alloying, Mater. Sci. Eng. A, 190(1995), No. 1–2, p. 181.

    Article  Google Scholar 

  16. S.C. Tjong and K.C. Lau, Tribological behaviour of SiC particle-reinforced copper matrix composites, Mater. Lett., 43(2000), No. 5–6, p. 274.

    Article  CAS  Google Scholar 

  17. J.R. Groza and J.C. Gibeling, Principles of particle selection for dispersion-strengthened copper, Mater. Sci. Eng. A, 171(1993), No. 1–2, p. 115.

    Article  Google Scholar 

  18. L.L. Dong, M Ahangarkani, W.G. Chen, and Y.S. Zhang, Recent progress in development of tungsten-copper composites: Fabrication, modification and applications, Int. J. Refract. Met. Hard Mater., 75(2018), p. 30.

    Article  CAS  Google Scholar 

  19. Z.M. Xie, R Liu, S Miao, X.D. Yang, T Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, Y.Y. Lian, and X. Liu, Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature, Sci. Rep., 5(2015), art. No. 16014.

  20. M.A. Atwater, D Roy, K.A. Darling, B.G. Butler, R.O. Scat-tergood, and C.C. Koch, The thermal stability of nanocrystal-line copper cryogenically milled with tungsten, Mater. Sci. Eng. A, 558(2012), p. 226.

    Article  CAS  Google Scholar 

  21. T Raghu, R Sundaresan, P Ramakrishnan, and T.R. Rama Mohan, Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying, Mater. Sci. Eng. A, 304-306(2001), p. 438.

    Article  Google Scholar 

  22. Y.J. Guo, H.T. Guo, B.X. Gao, X.G. Wang, Y.B. Hu, and Z.Q. Shi, Rapid consolidation of ultrafine grained W-30wt%Cu composites by field assisted sintering from the sol-gel prepared nanopowders, J. Alloys Compd., 724(2017), p. 115.

    Google Scholar 

  23. Y.W. Jiang, S.G. Yang, Z.H. Hua, and H.B. Huang, Sol-gel autocombustion synthesis of metals and metal alloys, Angew. Chem. Int. Ed., 48(2009), No. 45, p. 8529.

    Article  CAS  Google Scholar 

  24. S Mula, D Setman, K Youssef, R.O. Scattergood, and C.C. Koch, Structural evolution of Cu(1-X)YX alloys prepared by mechanical alloying: Their thermal stability and mechanical properties, J. Alloys Compd., 627(2015), p. 108.

    Article  CAS  Google Scholar 

  25. A.R. Miedema, P.F. de Chatel, and F.R. de Boer, Cohesion in alloys—Fundamentals of a semi-empirical model, Physica B+C, 100(1980), No. 1, p. 1.

    Article  CAS  Google Scholar 

  26. M Ardestani, H Arabi, H Razavizadeh, H.R. Rezaie, B Jankovic, and S. Mentus, An investigation about the activation energies of the reduction transitions of fine dispersed CuWO4-x/WO3-x oxide powders, Int. J. Refract. Met. Hard Mater., 28(2010), No. 3, p. 383.

    Article  CAS  Google Scholar 

  27. Y Zhou, Q.X. Sun, R Liu, X.P. Wang, C.S. Liu, and Q.F. Fang, Microstructure and properties of fine grained W-15wt%Cu composite sintered by microwave from the sol-gel prepared powders, J. Alloys Compd., 547(2013), p. 18.

    Article  CAS  Google Scholar 

  28. A.K. Basu and F.R. Sale, Copper-tungsten composite powders by the hydrogen reduction of copper tungstate, J. Mater. Sci., 13(1978), No. 12, p. 2703.

    Article  CAS  Google Scholar 

  29. K.F. Wang, G.D. Sun, Y.D. Wu, and G.H. Zhang, Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction-carburization process, J. Alloys Compd., 784(2019), p. 362.

    Article  CAS  Google Scholar 

  30. S.N. Alam, Synthesis and characterization of W-Cu nano-composites developed by mechanical alloying, Mater. Sci. Eng. A, 433(2006), No. 1–2, p. 161.

    Article  Google Scholar 

  31. North American Hoganas High Alloys LLC, GLIDCOP® Dispersion Strengthened Copper, North American Hoganas High Alloys LLC, Pennsylvania [2019-7-25]. https://doi.org/www.hoganas.com/en/powder-technologies/glidcop

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-029A2) and State Key Lab of Advanced Metals and Materials of China (No. 2019-Z10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cun-guang Chen or Zhi-meng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Tx., Chen, Cg., Guo, Zm. et al. Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction. Int J Miner Metall Mater 26, 1477–1483 (2019). https://doi.org/10.1007/s12613-019-1889-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1889-3

Keywords

Navigation