Skip to main content
Log in

Formation of interfacial Al-Ce-Cu-W amorphous layers in aluminum matrix composite through thermally driven solid-state amorphization

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Interfacial Al-Ce-Cu-W amorphous layers formed through thermally driven solid-state amorphization within the (W+CeO2)/2024Al composite were investigated. The elemental distributions and interfacial microstructures were examined with an electron probe microanalyzer and a high-resolution transmission electron microscope, respectively. The consolidation of composites consisted of two thermal processes: vacuum degassing (VD) and hot isostatic pressing (HIP). During consolidation, not only the three major elements (Al, W, and Ce) but also the alloying elements (Mg and Cu) in the Al matrix contributed to amorphization. At VD and HIP temperatures of 723 K and 763 K, interfacial amorphous layers were formed within the composite. Three diffusion processes were necessary for interfacial amorphization: (a) long-range diffusion of Mg from the Al matrix to the interfaces during VD; (b) long-range diffusion of Cu from the Al matrix to the interfaces during HIP; (c) short-range diffusion of W toward the Al matrix during HIP. The newly formed interfacial Al-Ce-Cu-W amorphous layers can be categorized under the Al-Ce-TM (TM: transition metals) amorphous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Cohen and D. Turnbull, Composition requirements for glass formation in metallic and ionic systems, Nature, 189(1961), No. 4759, p. 131.

    Article  CAS  Google Scholar 

  2. R.B. Schwarz and W.L. Johnson, Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals, Phys. Rev. Lett., 51(1983), No. 5, p. 415.

    Article  CAS  Google Scholar 

  3. R.B. Schwarz, K.L. Wong, W.L. Johnson, and B.M. Clemens, A study of amorphous alloys of Au with group III A elements (Y and La) formed by solid-state diffusion reaction, J. Non-Cryst. Solids, 61–62(1984), p. 129.

    Article  Google Scholar 

  4. E.J. Cotts, W.J. Meng, and W.L. Johnson, Calorimetric study of amorphization in planar, binary, multilayer, thin-film diffusion couples of Ni and Zr, Phys. Rev. Lett., 57(1986), No. 18, p. 2295.

    Article  CAS  Google Scholar 

  5. S.B. Newcomb and K.N. Tu, Transmission electron microscopic observations of amorphous NiZr alloy formation by solid-state reaction, Appl. Phys. Lett., 48(1986), No. 21, p. 1436.

    Article  CAS  Google Scholar 

  6. R.J. Highmore, J.E. Evetts, A.L. Greer, and R.E. Somekh, Differential scanning calorimetry study of solid-state amorphization in multilayer thin-film Ni/Zr, Appl. Phys. Lett., 50(1987), No. 10, p. 566.

    Article  CAS  Google Scholar 

  7. K.N. Tu, G.V. Chandrashekhar, and T.C. Chou, Amorphous alloy formation by solid state reaction, Thin Solid Films, 163(1988), p. 43.

    Article  CAS  Google Scholar 

  8. G.V. Chandrashekhar, D. Gupta, S. Newcomb, F.H.M. Spit, and K.N. Tu, Comparison between amorphous Ni-Zr alloys formed by solid state reaction and by codeposition, Thin Solid Films, 164(1988), p. 199.

    Article  Google Scholar 

  9. M. Van Rossum, M-A. Nicolet, and W.L. Johnson, Amorphization of Hf-Ni films by solid-state reaction, Phys. Rev. B, 29(1984), No. 10, p. 5498.

    Article  CAS  Google Scholar 

  10. P. Guilmin, P. Guyot, and G. Marchal, Amorphization of crystalline Co and Sn multilayers by solid state reaction, Phys. Lett. A, 109(1985), No. 4, p. 174.

    Article  Google Scholar 

  11. H. Schröder, K. Samwer, and U. Köster, Micromechanism for metallic-glass formation by solid-state reactions, Phys. Rev. Lett., 54(1985), No. 3, p. 197.

    Article  Google Scholar 

  12. Z.H. Yan and W.K. Wang, Amorphous Fe-Ti alloy formed by solid state reaction, Solid State Commun., 68(1988), No. 9, p. 811.

    Article  CAS  Google Scholar 

  13. D.A. Lilienfeld, M. Nastasi, H.H. Johnson, D.G. Ast, and J.W. Mayer, Amorphous-to-quasicrystalline transformation in the solid state, Phys. Rev. Lett., 55(1985), No. 15, p. 1587.

    Article  CAS  Google Scholar 

  14. I. Levi and D. Shechtman, Amorphous and quasicrystalline Al-Cr and Al-Cr-Si phases produced by solid state diffusion of alternating thin layers, [in] J.C. Toledano, ed., Geometry and Thermodynamics, NATO ASI Series (Series B: Physics), Vol. 229, Springer, Boston, MA, 1990, p. 371.

    Chapter  Google Scholar 

  15. P.L. Ratnaparkhi and J.M. Howe, Amorphous phase formation by solid state reaction at a diffusion-bonded Al/SiC interface, Scripta Metall. Mater., 27(1992), No. 2, p. 133.

    Article  CAS  Google Scholar 

  16. B.X. Liu, J.R. Ding, D.Z. Che, and H.B. Zhang, Al-Yb amorphous alloys produced by ion mixing or solid state reaction, [in] G.S. Was, L.E. Rehn, and D.M. Follstaedt, eds., Phase Formation and Modification by Beam-Solid Interactions Symposium, Boston, MA, 1991, p. 521.

  17. U. Gösele and K.N. Tu, “Critical thickness” of amorphous phase formation in binary diffusion couples, J. Appl. Phys., 66(1989), No. 6, p. 2619.

    Article  Google Scholar 

  18. A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto, Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2), Jpn. J. Appl. Phys., 27(1988), No. 4, p. L479.

    Article  CAS  Google Scholar 

  19. Y. He, S.J. Poon, and G.J. Shiflet, Synthesis and properties of metallic glasses that contain aluminum, Science, 241(1988), No. 4873, p. 1640.

    Article  CAS  Google Scholar 

  20. Y. Shen and J.H. Perepezko, Al-based amorphous alloys: Glass-forming ability, crystallization behavior and effects of minor alloying additions, J. Alloys Compd., 707(2017), p. 3.

    Article  CAS  Google Scholar 

  21. X.F. Wang, D. Wang, B. Zhu, Y.J. Li, and F.S. Han, Crystallization kinetics and thermal stability of mechanically alloyed Al76Ni8Ti8Zr4Y4 glassy powder, J. Non-Cryst. Solids, 385(2014), p. 111.

    Article  CAS  Google Scholar 

  22. G. Wilde, H. Sieber, and J.H. Perepezko, Glass formation versus nanocrystallization in an Al92Sm8 alloy, Scripta Mater., 40(1999), No. 7, p. 779.

    Article  CAS  Google Scholar 

  23. Z. Lv, C.H. Mao, J. Wang, Q.S. Liang, S.W. Ma, Z.M. Yang, J. Yang, and Y. Li, Interfacial microstructure in W/2024Al composite and inhibition of W-Al direct reaction by CeO2 doping: Formation and crystallization of Al-Ce-Cu-W amorphous layers, Materials, 12(2019), No. 7, p. 1117.

    Article  CAS  Google Scholar 

  24. M. Matsuura, M. Sakurai, K. Suzuki, A.P. Tsai, and A. Inoue, Local structure change of Ce and Cu in the course of nanocrystalline formation from amorphous Al87Ni8Ce3Cu2, Mater. Sci. Eng. A, 226–228(1997), p. 511.

    Article  Google Scholar 

  25. C.Triveño Rios, S. Suriñach, M.D. Baró, C. Bolfarini, W.J. Botta, and C.S. Kiminami, Glass forming ability of the Al-Ce-Ni system, J. Non-Cryst. Solids, 354(2008), No. 42–44, p. 4874.

    Article  Google Scholar 

  26. H. Yang, J.Q. Wang, and Y. Li, Influence of TM and RE elements on glass formation of the ternary Al-TM-RE systems, J. Non-Cryst. Solids, 354(2008), No. 29, p. 3473.

    Article  CAS  Google Scholar 

  27. K.K. Song, X.F. Bian, X.Q. Lv, J. Guo, G.H. Li, and M.T. Xie, Compositional dependence of glass-forming ability, mediumrange order, thermal stability and liquid fragility of Al-Ni-Ce-based amorphous alloys, Mater. Sci. Eng. A, 506(2009), No. 1–2, p. 87.

    Article  Google Scholar 

  28. G.H. Li, W.M. Wang, X.F. Bian, J.T. Zhang, R. Li, and L. Wang, Comparing the dynamic and thermodynamic behaviors of Al86Ni9-La5/(La0.5Ce0.5)5 amorphous alloys, J. Alloys Compd, 478(2009), No. 1–2, p. 745.

    Article  CAS  Google Scholar 

  29. S.P. Sun, D.Q. Yi, H.Q. Liu, B. Zang, and Y. Jiang, Calculation of glass forming ranges in Al-Ni-RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miedema’s model, J. Alloys Compd., 506(2010), No. 1, p. 377.

    Article  CAS  Google Scholar 

  30. J.J. Luo, G.Y. Wang, H.R. Qi, Y. Yokoyama, P.K. Liaw, and A. Inoue, Interpreting temperature evolution of a bulk-metallic glass during cyclic loading through spatial-temporal modeling, Intermetallics, 29(2012), p. 1.

    Article  CAS  Google Scholar 

  31. X.F. Hu, J. Guo, G.J. Fan, and T.T. Feng, Evaluation of glass-forming ability for Al-based amorphous alloys based on superheated liquid fragility and thermodynamics, J. Alloys Compd., 574(2013), p. 18.

    Article  CAS  Google Scholar 

  32. C.L. Li, J.W. Murray, K.T. Voisey, A.T. Clare, and D.G. McCartney, Amorphous layer formation in Al860Co76Ce64 glass-forming alloy by large-area electron beam irradiation, Appl. Surf. Sci., 280(2013), p. 431.

    Article  CAS  Google Scholar 

  33. C. Lea and C. Molinari, Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys, J. Mater. Sci., 19(1984), p. 2336.

    Article  CAS  Google Scholar 

  34. D.T.L. van Agterveld, G. Palasantzas, and J.Th.M. De Hosson, Magnesium surface segregation and oxidation in Al-Mg alloys studied with local probe scanning Auger-scanning electron microscopy, Appl. Surf. Sci., 152(1999), No. 3–4, p. 250.

    Article  CAS  Google Scholar 

  35. W.D. Xiao, Q.L. Guo, and E.G. Wang, Transformation of CeO2(111) to Ce2O3(0001) films, Chem. Phys. Lett., 368(2003), No. 5–6, p. 527.

    Article  CAS  Google Scholar 

  36. J.M. Chen, X.M. Zhang, Y.L. Deng, Y. Xiao, C. Xiong, and H. Jiang, Thermodynamics of melding and refining of magnesium alloys, J. Cent. South Univ.: Sci. Technol., 37(2006), No. 3, p. 427.

    Google Scholar 

  37. C.H. Mao, X.D. Sun, Q.S. Liang, J. Yang, and J. Du, Interfacial reaction process of the hot-pressed WC/2024Al composite, Rare Met., 32(2013), No. 4, p. 397.

    Article  CAS  Google Scholar 

  38. W.L. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials, Prog. Mater. Sci., 30(1986), No. 2, p. 81.

    Article  CAS  Google Scholar 

  39. B. Zhang, D.Q. Zhao, M.X. Pan, R.J. Wang, and W.H. Wang, Formation of cerium-based bulk metallic glasses, Acta Mater., 54(2006), No. 11, p. 3025.

    Article  CAS  Google Scholar 

  40. D.B. Miracle, W.S. Sanders, and O.N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses, Philos. Mag., 83(2003), No. 20, p. 2409.

    Article  CAS  Google Scholar 

  41. D.B. Miracle, The efficient cluster packing model — An atomic structural model for metallic glasses, Acta Mater., 54(2006), No. 16, p. 4317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-hui Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Z., Mao, Ch., Wang, J. et al. Formation of interfacial Al-Ce-Cu-W amorphous layers in aluminum matrix composite through thermally driven solid-state amorphization. Int J Miner Metall Mater 27, 970–979 (2020). https://doi.org/10.1007/s12613-019-1952-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1952-0

Keywords

Navigation