Skip to main content
Log in

Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Auger electron spectroscopy (AES) has been used to follow the surface segregation behaviour of magnesium at the surface of Al-Mg alloys in the temperature range up to 600° C as a function of time. The evaporation rate of magnesium from the magnesium-rich surface has also been measured. The combination of the competing processes of segregation and evaporation has been treated theoretically and compared with the experimental measurements. The measured equilibrium surface enrichment of magnesium fell from a factor of 24 at 100° C to 12 at 200° C. At higher temperature the evaporation rate exceeded the segregation rate and the surface layer became magnesium-depleted. The data also lead to a low-temperature determination of the diffusivity of magnesium in aluminium. The same Al-Mg alloys have been heat-treated, within a similar time-temperature regime, in air. The oxide films have been composition-depth profiled using AES with ion sputtering, and measurements of the rate of oxide growth lead to information about the diffusivity of magnesium through the oxide films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lea andJ. Ball,Appl. Surf. Sci. 17 (1984).

  2. M. P. Seah andW. A. Dench,Surf. Interface Anal. 1 (1979) 2.

    Google Scholar 

  3. M. P. Seah,Analusis 9 (1981) 171.

    Google Scholar 

  4. S. Ichimura andR. Shimizu,Surf. Sci. 112 (1981) 386.

    Google Scholar 

  5. C. Lea andM. P. Seah,Phil. Mag. 35 (1977) 213.

    Google Scholar 

  6. S. Dushman, “Scientific Foundations of Vacuum Technique”, 2nd Edn (John Wiley, 1962).

  7. R. E. Honig andD. A. Kramer,RCA Review 30 (1969) 285.

    Google Scholar 

  8. J. Crank, ‘The Mathematics of Diffusion” (Clarendon Press, Oxford, 1956).

    Google Scholar 

  9. S. Hofmann andJ. Erlewein,Scripta Metall. 10 (1976) 857.

    Google Scholar 

  10. T. Malis andM. C. Chaturved,J. Mater. Sci. 17 (1982) 1479.

    Google Scholar 

  11. R. L. Edgar,Canad. Metall. Q. 13 (1974) 177.

    Google Scholar 

  12. J. M. Chen, T. S. Sun, R. K. Viswanadham andJ. A. S. Green,Met. Trans. 8A (1977) 1935.

    Google Scholar 

  13. T. S. Sun, J. M. Chen, R. K. Viswanadham andJ. A. S. Green,Appl. Phys. Lett. 31 (1977) 580.

    Google Scholar 

  14. H. P. Stuwe andI. Jager,Acta. Metall. 24 (1976) 605.

    Google Scholar 

  15. J. J. Burton andE. S. Machlin,Phys. Rev. Lett. 37 (1976) 1433.

    Google Scholar 

  16. M. P. Seah,J. Catalysis 57 (1979) 450.

    Google Scholar 

  17. J. W. H. Clare,Metallurgia 57 (1958) 273.

    Google Scholar 

  18. M. Bishop andK. E. Fletcher,Int. Met. Rev. 17 (1972) 203.

    Google Scholar 

  19. H. R. Freche,Trans. AIME 122 (1936) 324.

    Google Scholar 

  20. R. M. Brick andA. Phillips,ibid. 124 (1937) 331.

    Google Scholar 

  21. N. A. Beloserski,Legkije Metally (Light Metals) 6 (10) (1937) 18.

    Google Scholar 

  22. W. Bungardt andF. Bollenrath,Z. Metallkde. 30 (1938) 377.

    Google Scholar 

  23. K. Uemara,Tetsu-to-Hagane 25 (1939) 24.

    Google Scholar 

  24. Idem, ibid. 26 (1940) 813.

    Google Scholar 

  25. A. Beerwald,Z. Electrochem. 45 (1939) 789.

    Google Scholar 

  26. W. Bungardt andH. Cornelius,Z. Metallkde. 32 (1940) 360.

    Google Scholar 

  27. R. F. Mehl, F. N. Rhines andK. A. Von Den Steinen,Metals and Alloys 13 (1941) 41.

    Google Scholar 

  28. H. Bückle,Z. Elektrochem. 49 (1943) 238.

    Google Scholar 

  29. M. Renouard,Rev. Metall. 48 (1951) 944.

    Google Scholar 

  30. P. G. Shewmon andF. N. Rhines,Trans. AIME 200 (1954) 1021.

    Google Scholar 

  31. P. G. Shewmon,ibid. 206 (1956) 918.

    Google Scholar 

  32. T. Amitani,Sumito Light Metal Tech. Rep. 1 (1960) 123.

    Google Scholar 

  33. W. Roth,Metall. 14 (1960) 979.

    Google Scholar 

  34. S. Z. Bokshtein, M. B. Bronfin, S. T. Kishkin andV. A. Marichev,Metall. Termicheskaya Obrabotka Metallov 4 (1965) 36.

    Google Scholar 

  35. H. Y. Hunsicker, “Aluminium”, Vol. 1 (American Society for Metals, Cleveland, Ohio, 1967) p. 118.

    Google Scholar 

  36. A. J. Cornish andM. K. B. Day,J. Inst. Metals 97 (1969) 44.

    Google Scholar 

  37. P. Doig andJ. W. Edington,Phil. Mag. 28 (1973) 961.

    Google Scholar 

  38. P. Doig, J. W. Edington andG. Hibbert,ibid. 28 (1973) 971.

    Google Scholar 

  39. P. Doig andJ. W. Edington,ibid. 29 (1974) 217.

    Google Scholar 

  40. S. Rothman, N. L. Peterson, L. J. Nowicki andL. C. Robinson,Phys. Status Solid B63 (1974) K29.

    Google Scholar 

  41. T. S. Sun, J. M. Chen, R. K. Viswanadham andJ. A. S. Green,J. Vac. Sci. Technol. 16 (1979) 668.

    Google Scholar 

  42. E. Hidvégi andE. Kovács-Csetényi,Mat. Sci. Eng. 27 (1977) 39.

    Google Scholar 

  43. I. Kovács, J. Lendvai andT. Ungár,ibid. 21 (1975) 169.

    Google Scholar 

  44. W. W. Smeltzer,J. Electrochem. Soc. 103 (1956) 209.

    Google Scholar 

  45. R. A. Hine andR. D. Guminski,J. Inst. Metals 89 (1961) 417.

    Google Scholar 

  46. C. N. Cochran andW. C. Sleppy,J. Electrochem. Soc. 108 (1961) 322.

    Google Scholar 

  47. P. E. Blackburn andE. A. Gulbransen,ibid. 107 (1960) 944.

    Google Scholar 

  48. C. Lea,Met. Sci. (1983) 357.

  49. H. Bach,Nucl. Instrum. Meth. 84 (1970) 4.

    Google Scholar 

  50. R. Lindner andG. D. Parfitt,J. Chem. Phys. 26 (1957) 182.

    Google Scholar 

  51. B. C. Harding, D. M. Price andA. J. Mortlock,Phil. Mag. 23 (1971) 399.

    Google Scholar 

  52. B. C. Harding andD. M. Price,ibid. 26 (1972) 253.

    Google Scholar 

  53. B. J. Wuensch, W. C. Stelle andT. Vasilos,J. Chem. Phys. 58 (1973) 5258.

    Google Scholar 

  54. M. Duclot andC. Deportes,J. Solid State Chem. 31 (1980) 377.

    Google Scholar 

  55. D. R. Sempolinski andW. D. Kingery,J. Amer. Ceram. Soc. 63 (1980) 664.

    Google Scholar 

  56. D. Mclean, “Grain boundaries in metals” (Oxford University Press, London, 1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence from Laboratoire de Thermodynamique et Physico-Chimie Metallurgiques, ENSEEG Domaine Universitaire, St. Martin d'Hères, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lea, C., Molinari, C. Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys. J Mater Sci 19, 2336–2352 (1984). https://doi.org/10.1007/BF01058110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058110

Keywords

Navigation