Skip to main content
Log in

Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The hot deformation behaviors of a 9Cr oxide dispersion-strengthened (9Cr-ODS) steel fabricated by mechanical alloying and hot isostatic pressing (HIP) were investigated. Hot compression deformation experiments were conducted on a Gleeble 3500 simulator in a temperature range of 950–1100°C and strain rate range of 0.001–1 s−1. The constitutive equation that can accurately describe the relationship between the rheological stress and the strain rate of the 9Cr-ODS steel was established, and the deformation activation energy was calculated as 780.817 kJ/mol according to the data obtained. The processing maps of 9Cr-ODS in the strain range of 0.1–0.6 were also developed. The results show that the region with high power dissipation efficiency corresponds to a completely recrystallized structure. The optimal processing conditions were determined as a temperature range of 1000–1050°C with strain rate between 0.003 and 0.01 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488(2012), No. 7411, p. 294.

    Article  Google Scholar 

  2. H.Q. Dong, L.M. Yu, Y.C. Liu, C.X. Liu, H.J. Li, and J.F. Wu, Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels, J. Alloys Compd., 702(2017), p. 538.

    Article  Google Scholar 

  3. H. Xu, Z. Lu, D. Wang, and C. Liu, Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition, Nucl. Eng. Technol., 49(2017), No. 1, p. 178.

    Article  Google Scholar 

  4. G.M. Zhang, Z.J. Zhou, K. Mo, P.H. Wang, Y.B. Miao, S.F. Li, M. Wang, X. Liu, M.Q. Gong, J. Almer, and J.F. Stubbins, The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy, J. Alloys Compd., 648(2015), p. 223.

    Article  Google Scholar 

  5. Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Z.Q. Ma, and H.J. Li, Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1156.

    Article  Google Scholar 

  6. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater., 204(1993), p. 65.

    Article  Google Scholar 

  7. C. Suryanarayana and N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci., 58(2013), No. 4, p. 383.

    Article  Google Scholar 

  8. S. Ukai and M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater., 307–311(2002), p. 749.

    Article  Google Scholar 

  9. G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent developments in irradiation-resistant steels, Ann. Rev. Mater. Res., 38(2008), p. 471.

    Article  Google Scholar 

  10. E.J. Mittemeijer, Fundamentals of Materials Science, Springer Berlin, Heidelberg, 2011, p. 101.

    Book  Google Scholar 

  11. Y. Sugino, S. Ukai, N. Oono, S. Hayashi, T. Kaito, S. Ohtsuka, H. Masuda, S. Taniguchi, and E. Sato, High temperature deformation mechanism of 15CrODS ferritic steels at cold-rolled and recrystallized conditions, J. Nucl. Mater., 466(2015), p. 653.

    Article  Google Scholar 

  12. E. Aydogan, O. El-Atwani, S. Takajo, S.C. Vogel, and S.A. Maloy, High temperature microstructural stability and recrystallization mechanisms in 14YWT alloys, Acta Mater., 148(2018), p. 467.

    Article  Google Scholar 

  13. Y. Sugino, S. Ukai, B. Leng, N. Oono, S. Hayashi, T. Kaito, and S. Ohtsuka, Grain boundary sliding at high temperature deformation in cold-rolled ODS ferritic steels, J. Nucl. Mater., 452(2014), No. 1–3, p. 628.

    Article  Google Scholar 

  14. Z.B. Zhang and W.G. Pantheon, Response of oxide nanoparticles in an oxide dispersion strengthened steel to dynamic plastic deformation, Acta Mater., 149(2018), p. 235.

    Article  Google Scholar 

  15. Y.C. Lin and X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., 32(2011), No. 4, p. 1733.

    Article  Google Scholar 

  16. S.B. Davenport, N.J. Silk, C.N. Sparks, and C.M. Sellars, Development of constitutive equations for modelling of hot rolling, Mater. Sci. Technol., 16(2000), No. 5, p. 539.

    Article  Google Scholar 

  17. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883.

    Article  Google Scholar 

  18. H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, and L.M. Yu, Hot deformation behavior of Ti—22Al—25Nb alloy by processing maps and kinetic analysis, J. Mater. Res., 31(2016), No. 12, p. 1764.

    Article  Google Scholar 

  19. Z.H. Yao, S.C. Wu, J.X. Dong, Q.Y. Yu, M.C. Zhang, and G.W. Han, Constitutive behavior and processing maps of low-expansion GH909 superalloy, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 432.

    Article  Google Scholar 

  20. S. Huang, L. Wang, X.T. Lian, G.P. Zhao, F.F. Li, and X.M. Zhang, Hot deformation map and its application of GH4706 alloy, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 462.

    Article  Google Scholar 

  21. J.Q. Zhang, H.S. Di, K. Mao, X.Y. Wang, Z.J. Han, and T.J. Ma, Processing maps for hot deformation of a high-Mn TWIP steel: A comparative study of various criteria based on dynamic materials model, Mater. Sci. Eng. A, 587(2013), p. 110.

    Article  Google Scholar 

  22. Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, Y. Huang, H.J. Li, and H.P. Wang, Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression, J. Alloys Compd., 712(2017), p. 687.

    Article  Google Scholar 

  23. Z.Y. Ding, Q.D. Hu, L. Zeng, and J.G. Li, Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1275.

    Article  Google Scholar 

  24. R.H. Zhang, Z.A. Zhou, M.W. Guo, J.J. Qi, S.H. Sun, and W.T. Fu, Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1043.

    Article  Google Scholar 

  25. X.H. Yue, C.F. Liu, H.H. Liu, S.F. Xiao, Z.H. Tang, and T. Tang, Effects of hot compression deformation temperature on the microstructure and properties of Al—Zr—La alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 236.

    Article  Google Scholar 

  26. M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, and S. Ohtsuka, Formation of residual ferrite in 9Cr-ODS ferritic steels, Mater. Sci. Eng. A, 527(2010), No. 16–17, p. 4418.

    Article  Google Scholar 

  27. H. Sakasegawa, M. Tamura, S. Ohtsuka, S. Ukai, H. Tanigawa, A. Kohyama, and M. Fujiwara, Precipitation behavior of oxide particles in mechanically alloyed powder of oxide-dispersion-strengthened steel, J. Alloys Compd., 452(2008), No. 1, p. 2.

    Article  Google Scholar 

  28. K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels, Mater. Sci. Eng. A, 527(2010), No. 16–17, p. 3651.

    Article  Google Scholar 

  29. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation, Mater. Des., 57(2014), p. 568.

    Article  Google Scholar 

  30. A. Seeger, J. Diehl, S. Mader, and H. Rebstock, Work-hardening and work-softening of face-centred cubic metal crystals, Philos. Mag. A, 2(1957), No. 15, p. 323.

    Article  Google Scholar 

  31. J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and structure under hot-working conditions, Metall. Rev., 14(1969), No. 1, p. 1.

    Google Scholar 

  32. M.F. Abbod, C.M. Sellars, A. Tanaka. D.A. Linkens, and M. Mahfouf, Effect of changing strain rate on flow stress during hot deformation of Type 316L stainless steel, Mater. Sci. Eng. A, 491(2008), No. 1–2, p. 290.

    Article  Google Scholar 

  33. C. Capdevila, G. Pimentel, M.M. Aranda, R. Rementeria, K. Dawson, E. Urones-Garrote, G.J. Tatlock, and M.K. Miller, Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy, JOM, 67(2015), No. 10, p. 2208.

    Article  Google Scholar 

  34. W.F. Zhang, W. Sha, W. Yan, W. Wang, Y.Y. Shan, and K. Yang, Analysis of deformation behavior and workability of advanced 9Cr—Nb—V ferritic heat resistant steels, Mater. Sci. Eng. A, 604(2014), p. 207.

    Article  Google Scholar 

  35. H.T. Zhao, G.Q. Liu, and L. Xu, Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel, Mater. Sci. Eng. A, 559(2013), p. 262.

    Article  Google Scholar 

  36. S.F. Medina and C.A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Mater., 44(1996), No. 1, p. 137.

    Article  Google Scholar 

  37. J. Dong, C. Li, C.X. Liu, Y. Huang, L.M. Yu, H.J. Li, and Y.C. Liu, Hot deformation behavior and microstructural evolution of Nb—V—Ti microalloyed ultra-high strength steel, J. Mater. Res., 32(2017), No. 19, p. 3777.

    Article  Google Scholar 

  38. C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15(1944), No. 1, p. 22.

    Article  Google Scholar 

  39. R. Raj, Development of a processing map for use in warm-forming and hot-forming processes, Metall. Trans. A, 12(1981), No. 6, p. 1089.

    Article  Google Scholar 

  40. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev., 43(1998), No. 6, p. 243.

    Article  Google Scholar 

  41. P.Y. Zhao, Y.Z. Wang, and S.R. Niezgoda, Microstructural and micromechanical evolution during dynamic recrystallization, Int. J. Plast., 100(2017), p. 52.

    Article  Google Scholar 

  42. H. Wu, S.P. Wen, H. Huang, X.L. Wu, K.Y. Gao, W. Wang, and Z.R. Nie, Hot deformation behavior and constitutive equation of a new type Al—Zn—Mg—Er—Zr alloy during isothermal compression, Mater. Sci. Eng. A, 651(2016), p. 415.

    Article  Google Scholar 

  43. D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, and L.T. Li, Hot deformation behavior and processing map of a typical Ni-based superalloy, Mater. Sci. Eng. A, 591(2014), p. 183.

    Article  Google Scholar 

  44. H. Farnoush, A. Momeni, K. Dehghani, J. Aghazadeh Mohandesi, and H. Keshmiri, Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases, Mater. Des., 31(2010), No. 1, p. 220.

    Article  Google Scholar 

  45. S.L. Sun, M.G. Zhang, and W.W. He, Hot deformation behavior and hot processing map of P92 steel, Adv. Mater. Res., 97–101(2010), p. 290.

    Article  Google Scholar 

  46. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater., 49(2001), No. 7, p. 1199.

    Article  Google Scholar 

  47. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Strain rate dependent microstructural evolution during hot deformation of a hot isostatically processed nickel base superalloy, J. Alloys Compd., 681(2016), p. 28.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the International Thermonuclear Experimental Reactor Program Special Project (Nos. 2015GB107003 and 2015GB119001), and the National Natural Science Foundation of China (Nos. 11672200, 51674175, and U1660201), and the Science and Technology Program of Tianjin, China (No. 18YFZCGX00070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-ming Yu or Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Yu, Lm., Liu, Yc. et al. Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization. Int J Miner Metall Mater 26, 597–610 (2019). https://doi.org/10.1007/s12613-019-1768-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1768-y

Keywords

Navigation