Skip to main content
Log in

Constitutive behavior and processing maps of low-expansion GH909 superalloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The hot deformation behavior of GH909 superalloy was studied systematically using isothermal hot compression tests in a temperature range of 960 to 1040°C and at strain rates from 0.02 to 10 s−1 with a height reduction as large as 70%. The relations considering flow stress, temperature, and strain rate were evaluated via power-law, hyperbolic sine, and exponential constitutive equations under different strain conditions. An exponential equation was found to be the most appropriate for process modeling. The processing maps for the superalloy were constructed for strains of 0.2, 0.4, 0.6, and 0.8 on the basis of the dynamic material model, and a total processing map that includes all the investigated strains was proposed. Metallurgical instabilities in the instability domain mainly located at higher strain rates manifested as adiabatic shear bands and cracking. The stability domain occurred at 960–1040°C and at strain rates less than 0.2 s−1; these conditions are recommended for optimum hot working of GH909 superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Liu, F. Yan, S. Liu, R.Y. Li, C.M. Wang, and X.Y. Hu, Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy, Opt. Laser Technol., 80(2016), p. 56.

    Article  Google Scholar 

  2. O. Covarrubias, O. Elizarraras, and R. Colas, Effect of heat treatment on mechanical properties of alloy 909, Mater. Sci. Technol., 27(2011), No. 6, p. 1092.

    Article  Google Scholar 

  3. M. Balachander, K.R. Vishwakarma, and N.L. Richards, Over-aged metallography of alloy 909 a low coefficient of expansion superalloy, Mater. Sci. Technol., 28(2012), No. 3, p. 380.

    Article  Google Scholar 

  4. F. Yan, R.Y. Li, J.M. Li, Y.J. Wang, C.M. Wang, and X.Y. Hu, The effect of aging heat treatment on microstructure and mechanical properties of laser welded joints of alloy GH909, Mater. Sci. Eng. A, 598(2014), p. 62.

    Article  Google Scholar 

  5. X. Guo, K. Kusabiraki, and S. Saji, Intragranular precipitates in Incoloy alloy 909, Scripta Mater., 44(2001), No. 1, p. 55.

    Article  Google Scholar 

  6. L.Z. Ma and K.M. Chang, Effects of different metallurgical processing on microstructures and mechanical properties of Inconel alloy 783, J. Mater. Eng. Perform., 13(2004), No. 1, p. 32.

    Article  Google Scholar 

  7. X.C. Wang, Effect of forging process and heat treatment process on structure and properties of GH2909 alloy, Spec. Steel Technol., 19(2013), No. 2, p. 8.

    Google Scholar 

  8. Y.K. Gao, Y.X. Zhao, and Y.F. Yin, Study of recrystallization of low expansion superalloy GH909, Heat Treat. Met., 30(2005), No. 1, p. 77.

    Google Scholar 

  9. K.E. Tello, A.P. Gerlich, and P.F. Mendez, Constants for hot deformation constitutive models for recent experimental data, Sci. Technol. Weld. Joining, 15(2010), No. 3, p. 260.

    Article  Google Scholar 

  10. Z.L. Zhao, H.Z. Guo, X.C. Wang, and Z.K. Yao, Deformation behavior of isothermally forged Ti−5Al−2Sn−2Zr−4Mo−4Cr powder compact, J. Mater. Process. Technol., 209(2009), p. 5509.

    Article  Google Scholar 

  11. Y. Han, G.W. Liu, D.N. Zou, R. Liu, and G.J. Qiao, Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression, Mater. Sci. Eng. A, 565(2013), p. 342.

    Article  Google Scholar 

  12. Y.J. Wang, G. Fang, J.H. Zhang, P. Zeng, X.G. Zhang, and G. Shi, Finite element simulation for the spinning process of an automobile spokes with varying thickness, Mater. Sci. Technol., 20(2012), No. 3, p. 103.

    Google Scholar 

  13. Z.Y. Ding, S.G. Jia, P.F. Zhao, M. Deng, and K.X. Song, Hot deformation behavior of Cu−0.6Cr−0.03Zr alloy during compression at elevated temperatures, Mater. Sci. Eng. A, 570(2013), p. 87.

    Article  Google Scholar 

  14. E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, Analysis of the work-hardening behavior of C−Mn steels deformed under hot-working conditions, Int. J. Plast., 51(2013), p. 145.

    Article  Google Scholar 

  15. Y.D. Qu, M.M. Wang, L.M. Lei, X. Huang, L.Q. Wang, J.N. Qin, W.J. Lu, and D. Zhang, Behavior and modeling of high temperature deformation of an α + β titanium alloy, Mater. Sci. Eng. A, 555(2012), p. 99.

    Article  Google Scholar 

  16. G.A. He, F. Liu, J.Y. Si, C. Yang, and L. Jiang, Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps, Mater. Des., 87(2015), p. 256.

    Article  Google Scholar 

  17. Z.X. Shi, X.F. Yan, and C.H. Duan, Characterization of hot deformation behavior of GH925 superalloy using constitutive equation, processing map and microstructure observation, J. Alloys Compd., 652(2015), p. 30.

    Article  Google Scholar 

  18. C.Y. Sun, G. Liu, Q.D. Zhang, R. Li, and L.L. Wang, Determination of hot deformation behavior and processing maps of IN 028 alloy using isothermal hot compression test, Mater. Sci. Eng. A, 595(2014), p. 92.

    Article  Google Scholar 

  19. S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map, J. Mater. Process. Technol., 225(2015), p. 110.

    Article  Google Scholar 

  20. Q.Y. Yu, Z.H. Yao, and J.X. Dong, Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 83.

    Article  Google Scholar 

  21. R. Baktash and H. Mirzadeh, A simple constitutive model for prediction of single-peak flow curves under hot working conditions, J. Eng. Mater. Technol., 138(2016), No. 2, p. 41.

    Article  Google Scholar 

  22. S.L. Guo, D.F. Li, X.P. Wu, X.Q. Xu, P. Du, and J. Hu, Characterization of hot deformation behavior of a Zn−10.2Al−2.1Cu alloy using processing maps, Mater. Des., 41(2012), p. 158.

    Article  Google Scholar 

  23. L. Zhang, Z. Li, Q. Lei, W.T. Qiu, and H.T. Luo, Hot deformation behavior of Cu-8.0Ni-1.8Si-0.15Mg alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1641.

    Article  Google Scholar 

  24. C. Poletti, H. Dieringa, and F. Warchomicka, Local deformation and processing maps of as-cast AZ31 alloy, Mater. Sci. Eng. A, 516(2009), No. 1-2, p. 138.

    Article  Google Scholar 

  25. W.Y. Kim, S. Hanada, and T. Takasugi, Flow behavior and microstructure of Co3Ti intermetallic alloy during superplastic deformation, Acta Mater., 46(1998), No. 10, p. 3593.

    Article  Google Scholar 

  26. S. Spigarelli, M.E. Mehtedi, M. Cabibbo, F. Gabrielli, and D. Ciccarelli, High temperature processing of brass constitutive analysis of hot working of Cu−Zn alloys, Mater. Sci. Eng. A, 615(2014), p. 331.

    Article  Google Scholar 

  27. X.S. Xia, Q. Chen, K. Zhang, Z.D. Zhao, M.L. Ma, X.G. Li, and Y.J. Li, Hot deformation behavior and processing map of coarse-grained Mg−Gd−Y−Nd−Zr alloy, Mater. Sci. Eng. A, 587(2013), p. 283.

    Article  Google Scholar 

  28. H.J. McQueen and N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322(2002), No. 1-2, p. 43.

    Article  Google Scholar 

  29. Y.C. Zhu, W.D. Zeng, F. Feng, Y. Sun, Y.F. Han, and Y.G. Zhou, Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1757.

    Article  Google Scholar 

  30. A. Mohamadizadeh, A. Zarei-Hanzaki, and H.R. Abedi, Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters, Mech. Mater., 95(2016), p. 60.

    Article  Google Scholar 

  31. H.L. Wei, G.Q. Liu, X. Xiao, and M.H. Zhang, Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel, Mater. Sci. Eng. A, 573(2013), p. 215.

    Article  Google Scholar 

  32. D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J.D. Dong, and L.T. Li, Hot deformation behavior and processing map of a typical Ni-based superalloy, Mater. Sci. Eng. A, 591(2014), p. 183.

    Article  Google Scholar 

  33. Y.H. Liu, Y.Q. Ning, Z.K. Yao, and H.Z. Guo, Hot deformation behavior of Ti−6.0Al−7.0Nb biomedical alloy by using processing map, J. Alloys Compd., 587(2014), p. 183.

    Article  Google Scholar 

  34. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q Jiang, Hot deformation and processing map of a typical Al−Zn−Mg−Cu alloy, J. Alloys Compd., 550(2013), p. 438.

    Article  Google Scholar 

  35. Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Research on the hot deformation behavior of Ti40 alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1205.

    Article  Google Scholar 

  36. J. Luo, M.Q. Li, H. Li, and W.X. Yu, Effect of the strain on the deformation behavior of isothermally compressed Ti−6Al−4V alloy, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 88.

    Article  Google Scholar 

  37. D. Samantaray, S. Mandal, and A.K. Bhaduri, Characterization of deformation instability in modified 9Cr–1Mo steel during thermo-mechanical processing, Mater. Des., 32(2011), No. 2, p. 716.

    Article  Google Scholar 

  38. A. DiSchino, J.M. Kenny, M.G. Mecozzi, and M. Barteri, Development of high nitrogen, low nickel, 18%Cr austenitic stainless steels, J. Mater. Sci., 35(2000), p. 4803.

    Article  Google Scholar 

  39. H. Dehghan, S.M Abbasi, A. Momeni, and A.K. Taheri, On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy, J. Alloys Compd., 564(2013), p. 13.

    Article  Google Scholar 

  40. S.F. Medina and C.A. Hernandez, General expression of the Zener−Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Mater., 44(1996), p. 137.

    Article  Google Scholar 

  41. L.X. Wang, G. Fang, M.A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing, J. Alloys Compd., 622(2015), p. 121.

    Article  Google Scholar 

  42. J. Xiao, D.S. Li, X.Q. Li, and T.S. Deng, Constitutive modeling and microstructure change of Ti-6Al-4V during the hot tensile deformation, J. Alloys Compd., 541(2012), p. 346.

    Article  Google Scholar 

  43. H.P. Li, L.F. He, G.Q. Zhao, and L. Zhang, Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson Cook model, Mater. Sci. Eng. A, 580(2013), p. 330.

    Article  Google Scholar 

  44. Y.Q. Ning, Z. Yao, X.M. Liang, and Y.H. Liu, Flow behavior and constitutive model for Ni−20.0Cr−2.5Ti−1.5Nb−1.0Al superalloy compressed below γ′ transus temperature, Mater. Sci. Eng. A, 551(2012), p. 7.

    Article  Google Scholar 

  45. X.S. Xia, Q. Chen, S.H. Huang, J. Lin, C.K. Hu, and Z.D. Zhao, Hot deformation behavior of extruded Mg−Zn−Y−Zr, J. Alloys Compd., 644(2015), p. 308.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Professor Xi Chen (Columbia University) for his guidance and the financial supports of China Scholarship Council, Beijing Science Foundation (No. 2154051), Doctoral Fund of the Ministry of Education of China (No. 20130006120005), and the National Natural Science Foundation of China (No. 51401020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hao Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Zh., Wu, Sc., Dong, Jx. et al. Constitutive behavior and processing maps of low-expansion GH909 superalloy. Int J Miner Metall Mater 24, 432–443 (2017). https://doi.org/10.1007/s12613-017-1424-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1424-3

Keywords

Navigation