Skip to main content
Log in

Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea (Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles’ band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sharghi, S. Ebrahimpourmoghaddam, R. Memarzadeh, and S. Javadpour, Tin oxide nanoparticles (NP-SnO2): preparation, characterization and their catalytic application in the Knoevenagel condensation, J. Iran. Chem. Soc., 10(2013), No. 1, p. 141.

    Article  Google Scholar 

  2. R.S. Kalubarme, J.Y. Lee, and C.J. Park, Carbon encapsulated tin oxide nanocomposites: An efficient anode for high performance sodium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 31, p. 17226.

    Article  Google Scholar 

  3. M. D’Arienzo, D. Cristofori, R. Scotti, and F. Morazzoni, New insights in the SnO2 sensing mechanism based on the properties of shape controlled tin oxide nanoparticles, Chem. Mater., 25(2013), No. 18, p. 3675.

    Article  Google Scholar 

  4. H. Chae, D. Song, Y.G. Lee, T. Son, W. Cho, Y.B. Pyun, T.Y. Kim, J.H. Lee, F.F. Santiago, J. Bisquert, and Y.S. Kang, Chemical effects of tin oxide nanoparticles in polymer electrolytes-based dye-sensitized solar cells, J. Phys. Chem. C, 118(2014), No. 30, p. 16510.

    Article  Google Scholar 

  5. S. Sudhaparimala, A. Gnanamani, and A.B. Mandal, Green synthesis of tin based nanomedicine: Assessment of microstructure and surface property, Am. J. Nanosci. Nanotechnol., 2(2014), No. 4, p. 75.

    Article  Google Scholar 

  6. H.S. Desarkar, P. Kumbhakar, and A.K. Mitra, Optical properties of tin oxide nanoparticles prepared by laser ablation in water: Influence of laser ablation time duration and laser fluence, Mater. Charact., 73(2012), p. 158.

    Article  Google Scholar 

  7. Q.Q. Zhao, L.S. Ma, Q. Zhang, C.G. Wang, and X.J. Xu, SnO2-based nanomaterials: Synthesis and application in lithium- ion batteries and supercapacitors, J. Nanomater., 2015(2015), art. No. 850147.

    Google Scholar 

  8. S. Sagadevan, Preparation, structural and electrical properties of tin oxide nanoparticles, J. Nanomater. Mol. Nanotechnol., 4(2015), No. 1, p. 889.

    Article  Google Scholar 

  9. S. Nilavazhagani, S. Muthukumaran, and M. Ashokkumar, Microstructural and band gap exploration on Ni-doped SnO2 nanoparticles co-doped with Cu, J. Mater. Sci. Mater. Electron., 26(2015), No. 6, p. 3989.

    Article  Google Scholar 

  10. V. Juttukonda, R.L. Paddock, J.E. Raymond, D. Denomme, A.E. Richardson, L.E. Slusher, and B.D. Fahlman, Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers, J. Am. Chem. Soc., 128(2006), No. 2, p. 420.

    Article  Google Scholar 

  11. S.C. Wang and M.O. Shaikh, A room temperature H2 sensor fabricated using high performance Pt-loaded SnO2 nanoparticles, Sensors, 15(2015), No. 6, p. 14286.

    Article  Google Scholar 

  12. A. Bhattacharjee and Md. Ahmaruzzaman, Photocatalytic- degradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight, RSC Adv., 5(2015), No. 81, p. 66122.

    Article  Google Scholar 

  13. A.R. Kamali and D.J. Fray, Tin-based materials as advanced anode materials for lithium ion batteries: A review, Rev. Adv. Mater. Sci., 27(2011), No. 1, p. 14.

    Google Scholar 

  14. Y.H. Zhou, J.W. Shim, C. Fuentes-Hernandez, A. Sharma, K.A. Knauer, A.J. Giordano, S.R. Marder, and B. Kippelen, Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure, Phys. Chem. Chem. Phys., 14(2012), No. 34, p. 12014.

    Article  Google Scholar 

  15. S. Gnanam and V. Rajendran, Synthesis of tin oxide nanoparticles by sol–gel process: effect of solvents on the optical properties, J. Sol-Gel Sci. Technol., 53(2010), No. 3, p. 555.

    Article  Google Scholar 

  16. K.C. Song and Y. Kang, Preparation of high surface area tin oxide powders by a homogeneous precipitation method, Mater. Lett., 42(2000), No. 5, p. 283.

    Article  Google Scholar 

  17. G.E. Patil, D.D. Kajale, V.B. Gaikwad, and G.H. Jain, Preparation and characterization of SnO2 nanoparticles by hydrothermal route, Int. Nano Lett., 2(2012), p. 17.

    Article  Google Scholar 

  18. Z.L. He and J.Q. Zhou, Synthesis,characterization and activity of tin oxide nanoparticles: Influence of solvothermal time on photocatalytic degradation of rhodamine B, Mod. Res. Catal., 2(2013), p. 13.

    Article  Google Scholar 

  19. A. Diallo, E. Manikandan, V. Rajendran, and M. Maaza, Physical and enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis, J. Alloys Compd., 681(2016), p. 561.

    Article  Google Scholar 

  20. E. Haritha, S.M. Roopan, G. Madhavi, G. Elango, N.A. Al-Dhabi, and M.V. Arasu, Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies, J. Photochem. Photobiol. B, 162(2016), p. 441.

    Article  Google Scholar 

  21. L. Fu, Y. Zheng, Q. Ren, A. Wang, and B. Deng, Green biosynthesis of SnO2 nanoparticles by plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation, J. Ovonic Res., 11(2015), No. 1, p. 21.

    Google Scholar 

  22. A. Bhattacharjee and M. Ahmaruzzaman, Facile synthesis of SnO2 quantum dots and its photocatalytic activity in the degradation of eosin Y dye: A green approach, Mater. Lett., 139(2015), p. 418.

    Article  Google Scholar 

  23. Y.H. Zheng, L. Fu, F.G. Han, A.W. Wang, W. Cai, J.P. Yu, J. Yang, and F. Peng, Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity, Green Chem. Lett. Rev., 8(2015), No. 2, p. 56.

    Article  Google Scholar 

  24. N. Srivastava and M. Mukhopadhyay, Biosynthesis of SnO2 nanoparticles using bacterium Erwinia herbicola and their photocatalytic activity for degradation of dyes, Ind. Eng. Chem. Res., 53(2014), No. 36, p. 13971.

    Article  Google Scholar 

  25. Y.H. Zheng, A.W. Wang, W. Cai, Z. Wan, F. Peng, Z. Liu, and L. Fu, Hydrothermal preparation of reduced graphene oxide–silver nanocomposite using Plectranthus amboinicus leaf extract and its electrochemical performance, Enzyme Microb. Technol., 95(2016), p. 112.

    Article  Google Scholar 

  26. S. Begum, Th.B. Devi, and M. Ahmaruzzaman, L-lysine monohydrate mediated facile and environment friendly synthesis of SnO2 nanoparticles and their prospective applications as a catalyst for the reduction and photodegradation of aromatic compounds, J. Environ. Chem. Eng., 4(2016), No. 3, p. 2976.

    Article  Google Scholar 

  27. G. Elango and S.M. Roopan, Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye, J. Photochem. Photobiol. B, 155(2016), p. 34.

    Article  Google Scholar 

  28. L. Fu and Z.X. Fu, Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity, Ceram. Int., 41(2015), No. 2, p. 2492.

    Article  Google Scholar 

  29. A. Dasgupta and K. Klein, Antioxidants in Food, Vitamins and Supplements: Prevention and Treatment of Disease, Elsevier, p. 239.

  30. H. Nagabhushana, R.B. Basavaraj, B.D. Prasad, S.C. Sharma, H.B. Premkumar, and G.R. Vijayakumar, Facile EGCG assisted green synthesis of raspberry shaped CdO nanoparticles, J. Alloys Compd., 669(2016), p. 232.

    Article  Google Scholar 

  31. P. Sutradhar and M. Saha, Synthesis of zinc oxide nanoparticles using tea leaf extract and its application for solar cell, Bull. Mater. Sci., 38(2015), No. 3, p. 653.

    Article  Google Scholar 

  32. P. Sutradhar, M. Saha, and D. Maiti, Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity, J. Nanostruct. Chem., 4(2014), p. 86.

    Article  Google Scholar 

  33. J. Wang, H.Q. Fan, H.W. Yu, and X. Wang, Synthesis and optical properties of SnO2 structures with different morphologies via hydrothermal method, J. Mater. Eng. Perform., 24(2015), No. 9, p. 3426.

    Article  Google Scholar 

  34. J. Nemeth, I. Dekany, K. Suvegh, T. Marek, Z. Klencsar, A. Vertes, and J.H. Fendler, Preparation and structural properties of tin oxide–montmorillonite nanocomposites, Langmuir, 19(2003), No. 9, p. 3762.

    Article  Google Scholar 

  35. M.J. Han, K. Jiang, J.Z. Zhang, W.L. Yu, Y.W. Li, Z.G. Hu, and J.H. Chu, Structural, electronic band transition and optoelectronic properties of delafossite CuGa1–x Cr x O2(0 = x = 1) solid solution films grown by sol–gel method, J. Mater. Chem., 22(2012), No. 35, p. 18463.

    Article  Google Scholar 

  36. M.J. Ayeshamariam, S. Ramalingam, M. Bououdina, and M. Jayachandran, Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations, Spectrochim. Acta Part A, 118(2014), p. 1135.

    Google Scholar 

  37. S.A. Ansari and M.H. Cho, Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications, Sci. Rep., 6(2016), art. No. 25405.

  38. A. Kar, S. Kundu, and A. Patra, Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles, J. Phys. Chem. C, 115(2011), No. 1, p. 118.

    Article  Google Scholar 

  39. B. Liu, C.W. Cheng, R. Chen, Z.X. Shen, H.J. Fan, and H.D. Sun, Fine structure of ultraviolet photoluminescence of tin oxide nanowires, J. Phys. Chem. C, 114(2010), No. 8, p. 3407.

    Article  Google Scholar 

  40. W. Chen, D. Ghosh, and S.W. Chen, Large-scale electrochemical synthesis of SnO2 nanoparticles, J. Mater. Sci., 43(2008), No. 15, p. 5291.

    Article  Google Scholar 

  41. E.R. Viana, J.C. González, G.M. Ribeiro, and A.G. de Oliveira, Photoluminescence and high-temperature persistent photoconductivity experiments in SnO2 nanobelts, J. Phys. Chem. C, 117(2013), No. 15, p. 7844.

    Article  Google Scholar 

Download references

Acknowledgement

One of the authors (Celina Selvakumari) is thankful to the UGC Basic Science Research Fellowship Grant for financial support. We acknowledge the Sophisticated Analytical Instruments Facility, Chennai for SEM, the Sophisticated Test and Instrumentation Centre, Cochin for TEM measurements, and the Department of Physics, Alagappa University for PL measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pathinettam Padiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumari, J.C., Ahila, M., Malligavathy, M. et al. Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach. Int J Miner Metall Mater 24, 1043–1051 (2017). https://doi.org/10.1007/s12613-017-1494-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1494-2

Keywords

Navigation