Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of nanobainitic steel subjected to multiple isothermal heat treatments

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Nanostructured bainite in 62MnSiCr steel was prepared by two-stage transformation process at different temperatures for less than 2 h. Microstructures, phase distribution and mechanical properties of the obtained steel were investigated. The results showed that the thickness of bainite plate and the amount of retained austenite decreased obviously after the two-stage transformation, while the carbon concentration in the retained austenite showed a small change. With increase in the second holding temperature within the bainite transformation range, all of them increased slightly. The additional formation of bainite at the second transformation stage is beneficial to refining the austenite and further enriching it with carbon, resulting in the enhancement of the mechanical stability. Bainite transformed in two-stage process showed a better comprehensive performance. Absorbed impact energy of 88 J and an ultimate tensile strength of 1818 MPa have been achieved by isothermal heat treatment at 300 °C followed by 260 °C. Meanwhile, there was a slight change in mechanical properties when the second transformation temperature varied from 260 to 220 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, Proc. R. Soc. A 466 (2009) 3–18.

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshia, Bainite in steels, Institute of Materials, London, 2001.

    Google Scholar 

  3. Y. Huang, X.L. Zhang, W.N. Liu, X.M. Wang, J.K. Han, J. Iron Steel Res. Int. 23 (2016) 253–260.

    Article  Google Scholar 

  4. Y.W. Wang, C. Feng, F.Y. Xu, B.Z. Bai, H.S. Fang, J. Iron Steel Res. Int. 17 (2010) No. 1, 49–53.

    Article  Google Scholar 

  5. D.Q. Kong, Q.S. Liu, Z.J. Dong, J. Iron Steel Res. Int. 20 (2013) No. 3, 45–49.

    Article  Google Scholar 

  6. C. Garcia-Mateo, F.G. Caballero, ISIJ Int. 45 (2005) 1736–1740.

    Article  Google Scholar 

  7. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, R. Elvira, Mater. Sci. Eng. A 549 (2012) 185–192.

    Article  Google Scholar 

  8. F.G. Caballero, C. Garcia-Mateo, M.K. Miller, JOM 66 (2014) 747–755.

    Article  Google Scholar 

  9. M. Soliman, H. Mostafa, A.S. El-Sabbagh, H. Palkowski, Mater. Sci. Eng. A 527 (2010) 7706–7713.

    Article  Google Scholar 

  10. F.G. Caballero, C. Garcia-Mateo, M.K. Miller, Mater. Sci. Technol. 31 (2015) 764–772.

    Article  Google Scholar 

  11. M. Zhang, Y.H. Wang, C.L. Zheng, F.C. Zhang, T.S. Wang, Mater. Des. 62 (2014) 168–174.

    Article  Google Scholar 

  12. C. Sun, S.W. Yang, R. Zhang, X. Wang, H. Guo, J. Iron Steel Res. Int. 22 (2015) 60–66

    Article  Google Scholar 

  13. S. Golchin, B. Avishan, S. Yazdani, Mater. Sci. Eng. A 656 (2016) 94–101.

    Article  Google Scholar 

  14. J.G. He, A.M. Zhao, C. Zhi, H.L. Fan, Scripta Mater. 107 (2015) 71–74.

    Article  Google Scholar 

  15. W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, S.Y. Zhang, Acta Mater. 61 (2013) 4142–4154.

    Article  Google Scholar 

  16. X.L. Wang, K.M. Wu, F. Hu, L. Yu, X.L. Wan, Scripta Mater. 74 (2014) 56–59.

    Article  Google Scholar 

  17. H.S. Hasan, M. Peet, H.K.D.H. Bhadeshia, S. Wood, E. Booth, Mater. Sci. Technol. 26 (2010) 453–456.

    Article  Google Scholar 

  18. G. Papadirnitriou, G. Fourlaris, J. Phys. IV France 7 (1997) C5-131–136

  19. K. Hase, C. Garcia-Mateo, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 438–440 (2006) 145–148.

    Article  Google Scholar 

  20. V.T. Duong, Y.Y. Song, K.S. Park, H.K.D.H. Bhadeshia, D.W. Suh, Metall. Mater. Trans. A 45 (2014) 4201–4209

    Article  Google Scholar 

  21. X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Mater. Des. 64 (2014) 237–245.

    Article  Google Scholar 

  22. C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 1821–1825.

    Article  Google Scholar 

  23. F.G. Caballero, H.W. Yen, M.K. Miller, J.R. Yang, J. Cornide, C. Garcia-Mateo, Acta Mater. 59 (2011) 6117–6123.

    Article  Google Scholar 

  24. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18 (2002) 279–284.

    Article  Google Scholar 

  25. D.J. Dyson, J. Iron Steel Inst. 208 (1970) 469–474.

    Google Scholar 

  26. F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, C.G. de Andrés, Acta Mater. 57 (2009) 8–17.

    Article  Google Scholar 

  27. S. Chen, G.Z. Wang, C. Liu, C.C. Wang, X.M. Zhao, W. Xu, J. Iron Steel Res. Int. 24 (2017) 1095–1103.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province of China under Grant Nos. QN2015259, E2016202121 and BJ2017009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-xing Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Zhang, X., Ding, J. et al. Microstructure and mechanical properties of nanobainitic steel subjected to multiple isothermal heat treatments. J. Iron Steel Res. Int. 25, 1062–1067 (2018). https://doi.org/10.1007/s42243-018-0156-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0156-6

Keywords

Navigation