Skip to main content
Log in

High Fructose and High Fat Exert Different Effects on Changes in Trabecular Bone Micro-structure

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

To compare the effects of high-fat diet (HFD) and high-fructose diet (HFrD) on bone metabolism at different time points, dynamically observe the bone histology and femur trabecular micro-architecture, and analyze the underlying mechanisms.

Methods

Sixty–Five male 6- to 7-week-old C57BL/6J mice were given HFD, HFrD, or standard diets (SD) for 8, 16, and 24 weeks. Micro-computed tomography (μCT) and bone histology were used to measure bone mass and trabecular micro-structure. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expression of genes related to bone and lipid metabolisms.

Results

Compared to SD mice, femoral trabecular bone mass was significantly increased in both HFrD mice and HFD mice at 8 weeks, it continued to be higher in HFrD mice at 16 and 24 weeks with the highest level at 16 weeks, but it was significantly decreased in HFD mice at 16 and 24 weeks. HFD mice showed more epididymal fat accumulation than HFrD mice. mRNA expression of Runx2 was up-regulated at 8 and 16 weeks, but down-regulated at 24 weeks similarly in both HFrD mice and HFD mice. mRNA expression of MMP9 and CTSK was up-regulated at 8 and 16 weeks in HFD mice, but down-regulated at 24 weeks in both HFrD mice and HFD mice.

Conclusions

Our data indicated that the HFrD and HFD had different modulating effects on bone mass. After short-term feeding, both HFrD and HFD showed positive effects on bone mass; however, after long-term feeding, bone mass was decreased in HFD mice. In contrast, the bone mass was first increased and then decreased in the HFrD mice. On the basis of these findings, we speculated that chronic consumption of fat and fructose would exert detrimental effects on bone mass which might a combination action of body mass, fat mass, and bone formation/bone resorption along with proinflammatory factor and bone marrow environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Table 2
Figure 2a, b, c, d
Table 3
Figure 2e
Figure 3a
Figure 3b
Figure 3c
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Burge, R., et al., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res, 2007. 22(3): p. 465–75.

    Article  PubMed  Google Scholar 

  2. Baroncelli, G.I., et al., Osteoporosis in children and adolescents: etiology and management. Paediatr Drugs, 2005. 7(5): p. 295–323.

    Article  PubMed  Google Scholar 

  3. Heaney, R.P., et al., Peak bone mass. Osteoporos Int, 2000. 11(12): p. 985–1009.

    Article  CAS  PubMed  Google Scholar 

  4. Lorincz, C., et al., High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr, 2010. 103(9): p. 1302–8.

    Article  CAS  PubMed  Google Scholar 

  5. Corwin, R.L., et al., Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr, 2006. 136(1): p. 159–65.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, L.J., et al., Relationship of obesity with osteoporosis. J Clin Endocrinol Metab, 2007. 92(5): p. 1640–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shapses, S.A. and D. Sukumar, Bone metabolism in obesity and weight loss. Annu Rev Nutr, 2012. 32: p. 287–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reid, I.R., Fat and bone. Archives of Biochemistry and Biophysics, 2010. 503(1): p. 20–27.

    Article  CAS  PubMed  Google Scholar 

  9. Lecka-Czernik, B., et al., High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol, 2015. 410: p. 35–41.

    Article  CAS  PubMed  Google Scholar 

  10. Cao, J.J., B.R. Gregoire, and H. Gao, High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone, 2009. 44(6): p. 1097–104.

    Article  CAS  PubMed  Google Scholar 

  11. Xiao, Y., et al., Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity. Nutrition, 2011. 27(2): p. 214–220.

    Article  CAS  PubMed  Google Scholar 

  12. Doucette, C.R., et al., A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice. J Cell Physiol, 2015. 230(9): p. 2032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guthrie, J.F. and J.F. Morton, Food Sources of Added Sweeteners in the Diets of Americans. Journal of the American Dietetic Association, 2000. 100(1): p. 43–51.

    Article  CAS  PubMed  Google Scholar 

  14. McGartland, C., et al., Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J Bone Miner Res, 2003. 18(9): p. 1563–9.

    Article  CAS  PubMed  Google Scholar 

  15. Marriott, B.P., N. Cole, and E. Lee, National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr, 2009. 139(6): p. 1228S–1235S.

    Article  CAS  PubMed  Google Scholar 

  16. Bass, E.F., et al., Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res, 2013. 33(12): p. 1063–71.

    Article  CAS  PubMed  Google Scholar 

  17. Jatkar, A., I.J. Kurland, and S. Judex, Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism. Calcif Tissue Int, 2016.

    Google Scholar 

  18. Ivaturi, R. and C. Kies, Mineral balances in humans as affected by fructose, high fructose corn syrup and sucrose. Plant Foods Hum Nutr, 1992. 42(2): p. 143–51.

    Article  CAS  PubMed  Google Scholar 

  19. Milne, D.B. and F.H. Nielsen, The interaction between dietary fructose and magnesium adversely affects macromineral homeostasis in men. J Am Coll Nutr, 2000. 19(1): p. 31–7.

    Article  CAS  PubMed  Google Scholar 

  20. Bergstra, A.E., A.G. Lemmens, and A.C. Beynen, Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J Nutr, 1993. 123(7): p. 1320–7.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, M., et al., MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine, 2014. 45(2): p. 302–10.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, K., et al., Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-alpha. Endocrine, 2015. 50(1): p. 239–49.

    Article  CAS  PubMed  Google Scholar 

  23. Malvi, P., et al., High fat diet promotes achievement of peak bone mass in young rats. Biochem Biophys Res Commun, 2014. 455(1-2): p. 133–8.

    Article  CAS  PubMed  Google Scholar 

  24. Styner, M., et al., Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone, 2014. 64: p. 39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosen, C.J. and M.L. Bouxsein, Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol, 2006. 2(1): p. 35–43.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson, L.R. and S.E. Bulun, Estrogen production and action. J Am Acad Dermatol, 2001. 45(3 Suppl): p. S116–24.

    Article  CAS  PubMed  Google Scholar 

  27. Krum, S.A., et al., Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J, 2008. 27(3): p. 535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shu, L., et al., High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int, 2015. 96(4): p. 313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsanzi, E., H.R. Light, and J.C. Tou, The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone, 2008. 42(5): p. 960–8.

    Article  CAS  PubMed  Google Scholar 

  30. Felice, J.I., et al., Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism, 2014. 63(2): p. 296–305.

    Article  CAS  PubMed  Google Scholar 

  31. Fehrendt, H., et al., Negative influence of a long-term high-fat diet on murine bone architecture. Int J Endocrinol, 2014. 2014: p. 318924.

    PubMed  PubMed Central  Google Scholar 

  32. Nunez, N.P., et al., Extreme obesity reduces bone mineral density: complementary evidence from mice and women. Obesity (Silver Spring), 2007. 15(8): p. 1980–7.

    Article  CAS  Google Scholar 

  33. Atteh, J.O. and S. Leeson, Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks. Poult Sci, 1984. 63(11): p. 2252–60.

    Article  CAS  PubMed  Google Scholar 

  34. Oh, S.R., et al., Saturated fatty acids enhance osteoclast survival. J Lipid Res, 2010. 51(5): p. 892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yarrow, J.F., et al., Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone, 2016. 85: p. 99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerbaix, M., et al., Impact of an obesogenic diet program on bone densitometry, micro architecture and metabolism in male rat. Lipids Health Dis, 2012. 11: p. 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brahmabhatt, V., et al., The effects of dietary-induced obesity on the biomechanical properties of femora in male rats. Int J Obes Relat Metab Disord, 1998. 22(8): p. 813–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ionova-Martin, S.S., et al., Reduced size-independent mechanical properties of cortical bone in high-fat diet-induced obesity. Bone, 2010. 46(1): p. 217–25.

    Article  CAS  PubMed  Google Scholar 

  39. Sawin, E.A., et al., Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice. PLoS One, 2016. 11(10): p. e0163234.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pirih, F., et al., Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res, 2012. 27(2): p. 309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sage, A.P., et al., Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J Bone Miner Res, 2011. 26(6): p. 1197–206.

    Article  CAS  PubMed  Google Scholar 

  42. Ascenzi, M.G., et al., Hyperlipidemia affects multiscale structure and strength of murine femur. J Biomech, 2014. 47(10): p. 2436–43.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijie Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Wang, C., Xie, Y. et al. High Fructose and High Fat Exert Different Effects on Changes in Trabecular Bone Micro-structure. J Nutr Health Aging 22, 361–370 (2018). https://doi.org/10.1007/s12603-017-0933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-017-0933-0

Key words

Navigation