Skip to main content
Log in

MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have been identified to play important functions during osteoblast proliferation, differentiation, and apoptosis. The miR-17~92 cluster is highly conserved in all vertebrates. Loss-of-function of the miR-17-92 cluster results in smaller embryos and immediate postnatal death of all animals. Germline hemizygous deletions of MIR17HG are accounted for microcephaly, short stature, and digital abnormalities in a few cases of Feingold syndrome. These reports indicate that miR-17~92 may play important function in skeletal development and mature. To determine the functional roles of miR-17~92 in bone metabolism as well as osteoblast proliferation and differentiation. Murine embryonic stem cells D3 and osteoprogenitor cell line MC3T3-E1 were induced to differentiate into osteoblasts; the expression of miR-17-92 was assayed by quantitative real-time RT-PCR. The skeletal phenotypes were assayed in mice heterozygous for miR-17~92 (miR-17~92 +). To determine the possibly direct function of miR-17~92 in bone cells, osteoblasts from miR-17~92 + mice were investigated by ex vivo cell culture. miR-17, miR-92a, and miR-20a within miR-17-92 cluster were expressed at high level in bone tissue and osteoblasts. The expression of miR-17-92 was down-regulated along with osteoblast differentiation, the lowest level was found in mature osteoblasts. Compared to wildtype controls, miR-17-92 + mice showed significantly lower trabecular and cortical bone mineral density, bone volume and trabecular number at 10 weeks old. mRNA expression of Runx2 and type I collagen was significantly lower in bone from miR-17-92 + mice. Osteoblasts from miR-17-92 + mice showed lower proliferation rate, ALP activity and less calcification. Our research suggests that the miR-17-92 cluster critically regulates bone metabolism, and this regulation is mostly through its function in osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.P. Lim, N.C. Lau, P. Garrett-Engele, A. Grimson, J.M. Schelter, J. Castle, D.P. Bartel, P.S. Linsley, J.M. Johnson, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027), 769–773 (2005). doi:10.1038/nature03315

    Article  CAS  PubMed  Google Scholar 

  2. A. Ota, H. Tagawa, S. Karnan, S. Tsuzuki, A. Karpas, S. Kira, Y. Yoshida, M. Seto, Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64(9), 3087–3095 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. S. Volinia, G.A. Calin, C.G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R.L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C.C. Harris, C.M. Croce, A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 103(7), 2257–2261 (2006). doi:0510565103

    Article  CAS  PubMed  Google Scholar 

  4. F. Petrocca, A. Vecchione, C.M. Croce, Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res. 68(20), 8191–8194 (2008). doi:10.1158/0008-5472.CAN-08-1768

    Article  CAS  PubMed  Google Scholar 

  5. L. He, J.M. Thomson, M.T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S.W. Lowe, G.J. Hannon, S.M. Hammond, A microRNA polycistron as a potential human oncogene. Nature 435(7043), 828–833 (2005). doi:nature03552

    Article  CAS  PubMed  Google Scholar 

  6. K.A. O’Donnell, E.A. Wentzel, K.I. Zeller, C.V. Dang, J.T. Mendell, c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043), 839–843 (2005). doi:10.1038/nature03677

    Article  PubMed  Google Scholar 

  7. J. Xiang, J. Wu, Feud or friend? The role of the miR-17-92 cluster in tumorigenesis. Curr. Genomics 11(2), 129–135 (2010). doi:10.2174/138920210790886853

    Article  CAS  PubMed  Google Scholar 

  8. B.D. Aguda, Y. Kim, M.G. Piper-Hunter, A. Friedman, C.B. Marsh, MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc. Natl. Acad. Sci. USA 105(50), 19678–19683 (2008). doi:10.1073/pnas.0811166106

    Article  CAS  PubMed  Google Scholar 

  9. M. Inomata, H. Tagawa, Y.M. Guo, Y. Kameoka, N. Takahashi, K. Sawada, MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113(2), 396–402 (2009). doi:10.1182/blood-2008-07-163907

    Article  CAS  PubMed  Google Scholar 

  10. F. Kuhnert, C.J. Kuo, miR-17-92 angiogenesis micromanagement. Blood 115(23), 4631–4633 (2010). doi:10.1182/blood-2010-03-276428

    Article  CAS  PubMed  Google Scholar 

  11. A. Ventura, A.G. Young, M.M. Winslow, L. Lintault, A. Meissner, S.J. Erkeland, J. Newman, R.T. Bronson, D. Crowley, J.R. Stone, R. Jaenisch, P.A. Sharp, T. Jacks, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132(5), 875–886 (2008). doi:10.1016/j.cell.2008.02.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Y. Lu, J.M. Thomson, H.Y. Wong, S.M. Hammond, B.L. Hogan, Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev. Biol. 310(2), 442–453 (2007). doi:S0012-1606(07)01252-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. L. de Pontual, E. Yao, P. Callier, L. Faivre, V. Drouin, S. Cariou, A. Van Haeringen, D. Genevieve, A. Goldenberg, M. Oufadem, S. Manouvrier, A. Munnich, J.A. Vidigal, M. Vekemans, S. Lyonnet, A. Henrion-Caude, A. Ventura, J. Amiel, Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat. Genet. 43(10), 1026–1030 (2011). doi:10.1038/ng.915

    Article  PubMed Central  PubMed  Google Scholar 

  14. Y. Liu, W. Liu, C. Hu, Z. Xue, G. Wang, B. Ding, H. Luo, L. Tang, X. Kong, X. Chen, N. Liu, Y. Ding, Y. Jin, MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells 29(11), 1804–1816 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. J.E. Onyia, B. Miller, J. Hulman, J. Liang, R. Galvin, C. Frolik, S. Chandrasekhar, A.K. Harvey, J. Bidwell, J. Herring, J.M. Hock, Proliferating cells in the primary spongiosa express phenotype in vitro. Bone 20(2), 93–100 (1997). doi:S875632829600350X

    Article  CAS  PubMed  Google Scholar 

  16. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4), 402–408 (2001). doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  17. T.C. Doetschman, H. Eistetter, M. Katz, W. Schmidt, R. Kemler, The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985)

    CAS  PubMed  Google Scholar 

  18. L. Duplomb, M. Dagouassat, P. Jourdon, D. Heymann, Concise review: embryonic stem cells: a new tool to study osteoblast and osteoclast differentiation. Stem Cells 25(3), 544–552 (2007). doi:2006-0395

    Article  CAS  PubMed  Google Scholar 

  19. L. Duplomb, M. Dagouassat, P. Jourdon, D. Heymann, Differentiation of osteoblasts from mouse embryonic stem cells without generation of embryoid body. In Vitro Cell. Dev. Biol. Anim. 43(1), 21–24 (2007). doi:10.1007/s11626-006-9010-4

    Article  CAS  PubMed  Google Scholar 

  20. T. Xia, Y. Liang, J. Ma, M. Li, M. Gong, X. Yu, Loss-of-function of SHARPIN causes an osteopenic phenotype in mice. Endocrine 39(2), 104–112 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. M. Suzuki, H. Kobayashi, N. Kanayama, Y. Saga, M. Suzuki, C.Y. Lin, R.B. Dickson, T. Terao, Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J. Biol. Chem. 279(15), 14899–14908 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. S.H. Lee, J.S. Kim, H.K. Jun, H.R. Lee, D. Lee, B.K. Choi, The major outer membrane protein of a periodontopathogen induces IFN-beta and IFN-stimulated genes in monocytes via lipid raft and TANK-binding kinase 1/IFN regulatory factor-3. J. Immunol. 182(9), 5823–5835 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Z. Li, M.Q. Hassan, M. Jafferji, R.I. Aqeilan, R. Garzon, C.M. Croce, A.J. van Wijnen, J.L. Stein, G.S. Stein, J.B. Lian, Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem. 284(23), 15676–15684 (2009). doi:10.1074/jbc.M809787200M809787200

    Article  CAS  PubMed  Google Scholar 

  24. A. Palmieri, F. Pezzetti, G. Brunelli, M. Martinelli, L. Scapoli, M. Arlotti, E. Masiero, F. Carinci, Medpor regulates osteoblast’s microRNAs. Biomed. Mater. Eng. 18(2), 91–97 (2008)

    CAS  PubMed  Google Scholar 

  25. Y. Mizuno, Y. Tokuzawa, Y. Ninomiya, K. Yagi, Y. Yatsuka-Kanesaki, T. Suda, T. Fukuda, T. Katagiri, Y. Kondoh, T. Amemiya, H. Tashiro, Y. Okazaki, miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 583(13), 2263–2268 (2009). doi:10.1016/j.febslet.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  26. J. Zhang, Q. Tu, L.F. Bonewald, X. He, G. Stein, J. Lian, J. Chen, Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J. Bone Miner. Res. 26(8), 1953–1963 (2011). doi:10.1002/jbmr.377

    Article  CAS  PubMed  Google Scholar 

  27. R. Hu, W. Liu, H. Li, L. Yang, C. Chen, Z.Y. Xia, L.J. Guo, H. Xie, H.D. Zhou, X.P. Wu, X.H. Luo, A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J. Biol. Chem. 286(14), 12328–12339 (2011). doi:10.1074/jbc.M110.176099

    Article  CAS  PubMed  Google Scholar 

  28. Z. Li, M.Q. Hassan, S. Volinia, A.J. van Wijnen, J.L. Stein, C.M. Croce, J.B. Lian, G.S. Stein, A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc. Natl. Acad. Sci. USA 105(37), 13906–13911 (2008). doi:10.1073/pnas.0804438105

    Article  CAS  PubMed  Google Scholar 

  29. J. Huang, L. Zhao, L. Xing, D. Chen, MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2), 357–364 (2010). doi:10.1002/stem.288

    PubMed Central  PubMed  Google Scholar 

  30. Y. Zhang, R.L. Xie, C.M. Croce, J.L. Stein, J.B. Lian, A.J. van Wijnen, G.S. Stein, A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc. Natl. Acad. Sci. USA 108(24), 9863–9868 (2011). doi:10.1073/pnas.1018493108

    Article  CAS  PubMed  Google Scholar 

  31. L. Guo, J. Xu, J. Qi, L. Zhang, J. Wang, J. Liang, N. Qian, H. Zhou, L. Wei, L. Deng, MicroRNA-17~92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblasts apoptosis. J. Cell Sci. (2012). doi:10.1242/jcs.117515

    Google Scholar 

  32. R.M. Boggs, J.A. Moody, C.R. Long, K.L. Tsai, K.E. Murphy, Identification, amplification and characterization of miR-17-92 from canine tissue. Gene 404(1–2), 25–30 (2007). doi:10.1016/j.gene.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  33. J.K. Van Camp, S. Beckers, D. Zegers, E. Boudin, T.L. Nielsen, M. Andersen, G. Roef, Y. Taes, K. Brixen, W. Van Hul, Genetic association study of WNT10B polymorphisms with BMD and adiposity parameters in Danish and Bmaleselgian. Endocrine (2013). doi:10.1007/s12020-012-9869-7

    Google Scholar 

  34. Y.H. Deng, L. Zhao, M.J. Zhang, C.M. Pan, S.X. Zhao, H.Y. Zhao, L.H. Sun, B. Tao, H.D. Song, W.Q. Wang, G. Ning, J.M. Liu, The influence of the genetic and non-genetic factors on bone mineral density and osteoporotic fractures in Chinese women. Endocrine 43(1), 127–135 (2013). doi:10.1007/s12020-012-9726-8

    Article  CAS  PubMed  Google Scholar 

  35. F. Rivadeneira, Hunting osteoporosis susceptibility genes: bigger is better but diverse is also welcome. Endocrine 43(1), 6–7 (2013). doi:10.1007/s12020-012-9804-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81072190 to Yu X, No. 81101920 to Ma J), the Science &Technology Department of Sichuan Province (2010SZ0168 to Yu X), and the Ministry of Education of the People Republic of China ([2011]1139 to Yu X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijie Yu.

Additional information

Mingliang Zhou and Junrong Ma have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Ma, J., Chen, S. et al. MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine 45, 302–310 (2014). https://doi.org/10.1007/s12020-013-9986-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9986-y

Keywords

Navigation