Skip to main content
Log in

Novel therapy of hyperhomocysteinemia in mild cognitive impairment, Alzheimer’s disease, and other dementing disorders

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Studies have produced conflicting results assessing hyperhomocysteinemia (HYH) treatment with B vitamins in patients with normal cognition, Alzheimer’s disease and related disorders (ADRD). This study examined the effect of HYH management with L-methylfolate (LMF), methylcobalamin (MeCbl; B12), and N-acetyl-cysteine (CFLN: Cerefolin®/Cerefolin-NAC®) on cognitive decline.

Design

Prospective, case-control study of subjects followed longitudinally.

Setting

Outpatient clinic for cognitive disorders.

Participants

116 ADRD patients (34 with HYH, 82 with No-HYH) met inclusion and exclusion criteria to participate. No study participant took B vitamins.

Intervention

HYH patients received CFLN, and No-HYH patients did not.

Measurements

Cognitive outcome measures included MCI Screen (memory), CERAD Drawings (constructional praxis), Ishihara Number Naming (object recognition), Trails A and B (executive function), and F-A-S test (verbal fluency). Dependent or predictor measures included demographics, functional severity, CFLN and no CFLN treatment duration, ADRD diagnosis, memantine and cholinesterase inhibitor treatment. Linear mixed effects models with covariate adjustment were used to evaluate rate of change on cognitive outcomes.

Results

The duration of CFLN treatment, compared to an equivalent duration without CFLN treatment, significantly slowed decline in learning and memory, constructional praxis, and visual-spatial executive function (Trails B). CFLN treatment slowed cognitive decline significantly more for patients with milder baseline severity. CFLN treatment effect increased as baseline functional severity decreased. The analytical model showed that treatment duration must exceed some minimum period of at least one year to slow the rate of cognitive decline.

Conclusion

After covariate adjustment, HYH+CFLN significantly slowed cognitive decline compared to No-HYH+No-CFLN. Longer CFLN treatment duration, milder baseline severity, and magnitude of homocysteine reduction from baseline were all significant predictors. There are a number of factors that could account for disagreement with other clinical trials of B vitamin treatment of HYH. Moreover, CFLN is chemically distinct from commonly used B vitamins as both LMF and MeCbl are the fully reduced and bioactive functional forms; CLFN also contains the glutathione precursor, N-acetyl-cysteine. The findings of other B vitamin trials of HYH can, therefore, only partly account for treatment effects of CFLN. These findings warrant further evaluation with a randomized, placebo-controlled trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Table 3
Table 4
Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wong YY, Almeida OP, McCaul KA et al. Homocysteine, Frailty, and All-Cause Mortality in Older Men: The Health in Men Study. J Gerontol A Biol Sci Med Sci. 2013;68(5):590–598.

    Article  CAS  PubMed  Google Scholar 

  2. MacFarlane AJ, Greene-Finestone LS, Shi Y. Vitamin B-12 and homocysteine status in a folate-replete population: results from the Canadian Health Measures Survey. Am J Clin Nutr. 2011;94(4):1079–1087.

    Article  CAS  PubMed  Google Scholar 

  3. Selhub J, Jacques PF, Bostom AG et al. Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification. Public Health Rev. 2000;28(1–4):117–145.

    CAS  PubMed  Google Scholar 

  4. Sachdev PS, Lipnicki DM, Crawford J et al. Sydney Memory and Ageing Study Team. Risk profiles for mild cognitive impairment vary by age and sex: the sydney memory and ageing study. Am J Geriatr Psychiatry. 2012;20(10):854–865.

    Article  PubMed  Google Scholar 

  5. Nie T, Lu T, Xie L, Huang P, Lu Y, Jiang M. Hyperhomocysteinemia and risk of cognitive decline: a meta-analysis of prospective cohort studies. Eur Neurol. 2014;72(3–4):241–248.

    CAS  PubMed  Google Scholar 

  6. Shea TB, Rogers E. Lifetime requirement of the methionine cycle for neuronal development and maintenance. Curr Opin Psychiatry. 2014;27(2):138–142.

    Article  PubMed  Google Scholar 

  7. Krupanidhi S, Sedimbi SK, Vaishnav G, Madhukar SS, Sanjeevi CB. Diabetes—role of epigenetics, genetics, and physiological factors. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009;34(9):837–845.

    CAS  PubMed  Google Scholar 

  8. Bruce KD, Cagampang FR. Epigenetic priming of the metabolic syndrome. Toxicol Mech Methods. 2011;21(4):353–361.

    Article  CAS  PubMed  Google Scholar 

  9. Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010;7(9):510–519.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lavebratt C, Almgren M, Ekström TJ. Epigenetic regulation in obesity. Int J Obes (Lond). 2012;36(6):757–765.

    Article  CAS  Google Scholar 

  11. Shi F, Chen X, Fu A, Hansen J, Stevens R, Tjonneland A, Vogel UB, Zheng T, Zhu Y. Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen. 2013;54(6):406–413.

    Article  CAS  PubMed  Google Scholar 

  12. Joska TM, Zaman R, Belden WJ. Regulated DNA methylation and the circadian clock: implications in cancer. Biology (Basel). 2014;3(3):560–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu HC, Hu CJ, Tang YC, Chang JG. A pilot study for circadian gene disturbance in dementia patients. Neurosci Lett. 2008;435(3):229–233.

    Article  CAS  PubMed  Google Scholar 

  14. Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J, Buchman AS, Schneider JA, Myers AJ, Bennett DA, De Jager PL. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet. 2014;10(11):e1004792.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Robinson RA, Joshi G, Huang Q, Sultana R, Baker AS, Cai J, Pierce W, St Clair DK, Markesbery WR, Butterfield DA. Proteomic analysis of brain proteins in APP/ PS-1 human double mutant knock-in mice with increasing amyloid beta-peptide deposition: insights into the effects of in vivo treatment with N-acetylcysteine as a potential therapeutic intervention in mild cognitive impairment and Alzheimer’s disease. Proteomics. 2011;11(21):4243–4256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Szucs TD, Käser A, Riesen WF. Economic impact of hyperhomocysteinemia in Switzerland. Cardiovasc Drugs Ther. 2005;19(5):365–369.

    Article  PubMed  Google Scholar 

  17. Kwok T, Lee J, Law CB, Pan PC, Yung CY, Choi KC, Lam LC. A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clin Nutr. 2011;30(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  18. Aisen PS, Schneider LS, Sano M, et al. Alzheimer Disease Cooperative Study. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774–1783.

    CAS  PubMed  Google Scholar 

  19. Shankle WR, Hara J, Rafii MS, Russell J. Impact of Hyperhomocysteinemia Treatment on Cognitive Decline due to Alzheimer’s Disease and Related Disorders. JARCP. 2013;2(4): 319–324.

    Google Scholar 

  20. Shankle WR, Mangrola T, Chan T, Hara J. Development and Validation of the Memory Performance Index: Reducing Measurement Error in Recall Tests. Alzheimer’s & Dementia. 2009;5:295–306.

    Article  Google Scholar 

  21. Shankle WR, Romney AK, Hara J, et al. Method to improve the detection of mild cognitive impairment. Proc Natl Acad Sci USA. 2005;102(13):4919–4924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rafii M, Taylor C, Coutinho A, Kim K, Galasko D. Comparison of the memory performance index with standard neuropsychological measures of cognition. Am J Alzheimers Dis Other Demen. 2011;26(3):235–239.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reisberg B. Dementia: a systematic approach to identifying reversible causes. Geriatrics. 1986;41(4):30–46.

    CAS  PubMed  Google Scholar 

  24. Blasko I, Hinterberger M, Kemmler G, Jungwirth S, Krampla W, Leitha T, Heinz Tragl K, Fischer P. Conversion from mild cognitive impairment to dementia: influence of folic acid and vitamin B12 use in the VITA cohort. J Nutr Health Aging 2012;16(8):687–694.

    Article  CAS  PubMed  Google Scholar 

  25. de Jager CA, Oulhaj A, Jacoby R et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592–600.

    Article  PubMed  Google Scholar 

  26. Sassone-Corsi P. Physiology. When metabolism and epigenetics converge. Science. 2013;339(6116):148–150.

    CAS  PubMed  Google Scholar 

  27. Moustafa AA, Hewedi DH, Eissa AM et al. The relationship between associative learning, transfer generalization, and homocysteine levels in mild cognitive impairment. PLoS One. 2012;7(9):e46496.

    Google Scholar 

  28. Sala I, Belén Sánchez-Saudinós M, Molina-Porcel L, Lázaro E, Gich I, Clarimón J, Blanco-Vaca F, Blesa R, Gómez-Isla T, Lleó A. Homocysteine and cognitive impairment. Relation with diagnosis and neuropsychological performance. Dement Geriatr Cogn Disord. 2008;26(6):506–512.

    Article  CAS  PubMed  Google Scholar 

  29. Doets EL, Ueland PM, Tell GS, Vollset SE, Nygård OK, Van’t Veer P, de Groot LC, Nurk E, Refsum H, Smith AD, Eussen SJ. Interactions between plasma concentrations of folate and markers of vitamin B(12) status with cognitive performance in elderly people not exposed to folic acid fortification: the Hordaland Health Study. Br J Nutr. 2014;111(6):1085–1095

    Article  CAS  PubMed  Google Scholar 

  30. Miller JW, Garrod MG, Allen LH, Haan MN, Green R. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate. Am J Clin Nutr. 2009 Dec;90(6):1586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vidal JS, Dufouil C, Ducros V, Tzourio C. Homocysteine, folate and cognition in a large community-based sample of elderly people—the 3C Dijon Study. Neuroepidemiology. 2008;30(4):207–214.

    Article  PubMed  Google Scholar 

  32. Rabaneda LG, Carrasco M, Lopez-Toledano MA, Murillo-Carretero M, Ruiz FA, Estrada C, Castro C. Homocysteine inhibits proliferation of neuronal precursors in the mouse adult brain by impairing the basic fibroblast growth factor signaling cascade and reducing extracellular regulated kinase 1/2-dependent cyclin E expression. FASEB J. 2008;22(11):3823–3835.

    Article  CAS  PubMed  Google Scholar 

  33. Kruman II, Fowler AK. Impaired one carbon metabolism and DNA methylation in alcohol toxicity. J Neurochem. 2014;129(5):770–780.

    Article  CAS  PubMed  Google Scholar 

  34. Jayalakshmi K, Sairam M, Singh SB, Sharma SK, Ilavazhagan G, Banerjee PK. Neuroprotective effect of N-acetyl cysteine on hypoxia-induced oxidative stress in primary hippocampal culture. Brain Res. 2005;1046(1–2):97–104.

    Article  CAS  PubMed  Google Scholar 

  35. Unnithan AS, Choi HJ, Titler AM, Posimo JM, Leak RK. Rescue from a two hit, high-throughput model of neurodegeneration with N-acetyl cysteine. Neurochem Int. 2012;61(3):356–368.

    Article  CAS  PubMed  Google Scholar 

  36. Rideau Batista Novais A, Guiramand J, Cohen-Solal C, Crouzin N, de Jesus Ferreira MC, Vignes M, Barbanel G, Cambonie G. N-acetyl-cysteine prevents pyramidal cell disarray and reelin-immunoreactive neuron deficiency in CA3 after prenatal immune challenge in rats. Pediatr Res. 2013;73(6):750–755.

    Article  PubMed  Google Scholar 

  37. Otte DM, Sommersberg B, Kudin A, Guerrero C, Albayram O, Filiou MD, Frisch P, Yilmaz O, Drews E, Turck CW, Bilkei-Gorzó A, Kunz WS, Beck H, Zimmer A. N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/G30 transgenic mice. Neuropsychopharmacology. 2011;36(11):2233–2243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng Y, Jin Y, Unverzagt FW, Su L, Yang L, Ma F, Hake AM, Kettler C, Chen C, Liu J, Bian J, Li P, Murrell JR, Hendrie HC, Gao S. The relationship between cholesterol and cognitive function is homocysteine-dependent. Clin Interv Aging. 2014;9:1823–1829.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Glushchenko AV, Jacobsen DW. Molecular targeting of proteins by L-homocysteine: mechanistic implications for vascular disease. Antioxid Redox Signal. 2007;9(11):1883–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hooshmand B, Polvikoski T, Kivipelto M, Tanskanen M, Myllykangas L, Erkinjuntti T, Mäkelä M, Oinas M, Paetau A, Scheltens P, van Straaten EC, Sulkava R, Solomon A. Plasma homocysteine, Alzheimer and cerebrovascular pathology: a populationbased autopsy study. Brain. 2013;136(Pt 9):2707–2716.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D’Anselmi F, Coluccia P, Calamandrei G, Scarpa S. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice.31. Mol Cell Neurosci. 2008;37(4):731–746.

    Article  CAS  PubMed  Google Scholar 

  42. Schaub C, Uebachs M, Beck H, Linnebank M. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Exp Brain Res. 2013;225(4):527–534.

    Article  CAS  PubMed  Google Scholar 

  43. Görtz P, Hoinkes A, Fleischer W, Otto F, Schwahn B, Wendel U, Siebler M. Implications for hyperhomocysteinemia: not homocysteine but its oxidized forms strongly inhibit neuronal network activity. J Neurol Sci. 2004 Mar 15;218(1–2):109–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Hara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, J., Shankle, W.R., Barrentine, L.W. et al. Novel therapy of hyperhomocysteinemia in mild cognitive impairment, Alzheimer’s disease, and other dementing disorders. J Nutr Health Aging 20, 825–834 (2016). https://doi.org/10.1007/s12603-016-0688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-016-0688-z

Key words

Navigation