Skip to main content
Log in

Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy

  • Review
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Norman RJ, Dewailly D, Legro RS, Hickey TE (2007) Polycystic ovary syndrome. Lancet 370(9588):685–697. https://doi.org/10.1016/S0140-6736(07)61345-2. PMID: 17720020

    Article  CAS  PubMed  Google Scholar 

  2. Ratajczak W, Rył A, Mizerski A et al (2019) Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs). Acta Biochim Pol 66:1–12

    CAS  PubMed  Google Scholar 

  3. GILLILAND SML and RG, (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria 2014:1–34

    Google Scholar 

  4. Unfer V, Dinicola S, Russo M (2023) A PCOS paradox: does inositol therapy find a rationale in all the different phenotypes? Int J Mol Sci. https://doi.org/10.3390/ijms24076213

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yurtdaş G, Akdevelioğlu Y (2020) A new approach to polycystic ovary syndrome: the gut microbiota. J Am Coll Nutr 39:371–382

    Article  PubMed  Google Scholar 

  6. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, Carmina E, Chang J, Yildiz BO, Laven JS, Boivin J, Petraglia F, Wijeyeratne CN, Norman RJ, Dunaif A, Franks S, Wild RA, Dumesic D, Barnhart K (2012) Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 97(1):28–38.e25. https://doi.org/10.1016/j.fertnstert.2011.09.024. Epub 2011 Dec 6. PMID: 22153789

    Article  PubMed  Google Scholar 

  7. Carmina E, Oberfield SE, Lobo RA (2010) The diagnosis of polycystic ovary syndrome in adolescents. Am J Obstet Gynecol 203:201.e1–201.e5. https://doi.org/10.1016/j.ajog.2010.03.008

    Article  PubMed  Google Scholar 

  8. Bhati M, D. Prabhu Y, Renu K, et al (2020) Role of TGF-β signalling in PCOS associated focal segmental glomerulosclerosis. Clin Chim Acta 510:244–251

    Article  CAS  PubMed  Google Scholar 

  9. Balen AH, Conway GS, Kaltsas G, Techatrasak K, Manning PJ, West C, Jacobs HS (1995) Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod 10(8):2107–2111. https://doi.org/10.1093/oxfordjournals.humrep.a136243. PMID: 8567849

    Article  Google Scholar 

  10. Khan MJ, Ullah A, Basit S (2019) Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet 12:249–260

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kakoly NS, Khomami MB, Joham AE et al (2018) Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Hum Reprod Update 24:455–467. https://doi.org/10.1093/humupd/dmy007

    Article  CAS  PubMed  Google Scholar 

  12. Dahan MH, Reaven G (2019) Relationship among obesity, insulin resistance, and hyperinsulinemia in the polycystic ovary syndrome. Endocrine. https://doi.org/10.1007/s12020-019-01899-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, Smolarczyk R, Meczekalski B (2021) Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci 22(7):3789. https://doi.org/10.3390/ijms22073789. PMID: 33917519; PMCID: PMC8038770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rath P (2020) A case of infertility due to PCOS treated successfully with homoeopathy. Int J Homoeopath Sci 4:249–260

    Article  Google Scholar 

  15. Angin P, Yoldemir T, Atasayan K (2019) Quality of life among infertile PCOS patients. Arch Gynecol Obstet 300:461–467. https://doi.org/10.1007/s00404-019-05202-z

    Article  PubMed  Google Scholar 

  16. Couto Alves A, Valcarcel B, Mäkinen VP et al (2017) Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity. Int J Obes 41:1331–1340. https://doi.org/10.1038/ijo.2017.126

    Article  CAS  Google Scholar 

  17. Setji TL, Brown AJ (2014) Polycystic ovary syndrome: update on diagnosis and treatment. Am J Med 127:912–919

    Article  PubMed  Google Scholar 

  18. Tremellen K, Pearce K (2012) Dysbiosis of gut microbiota (DOGMA) - a novel theory for the development of Polycystic Ovarian Syndrome. Med Hypotheses 79:104–112. https://doi.org/10.1016/j.mehy.2012.04.016

    Article  PubMed  Google Scholar 

  19. Valle Gottlieb MG, Closs VE, Junges VM, Schwanke CHA (2018) Impact of human aging and modern lifestyle on gut microbiota. Crit Rev Food Sci Nutr 58(9):1557–1564. https://doi.org/10.1080/10408398.2016.1269054. Epub 2017 Jul 21. PMID: 28085494

    Article  PubMed  Google Scholar 

  20. Yamazaki Y, Nakamura Y, Núñez G (2017) Role of the microbiota in skin immunity and atopic dermatitis. Allergol Int 66:539–544

    Article  CAS  PubMed  Google Scholar 

  21. Tamarelle J, Thiébaut ACM, de Barbeyrac B et al (2019) The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: a systematic review and meta-analysis. Clin Microbiol Infect 25:35–47

    Article  CAS  PubMed  Google Scholar 

  22. Ridaura V, Belkaid Y (2015) Gut microbiota: the link to your second brain. Cell 161:193–194

    Article  CAS  PubMed  Google Scholar 

  23. Lolou V (2021) The Role of Probiotics and Synbiotics on Hirsutism. Fermentation 7(1):10. https://doi.org/10.3390/fermentation7010010

    Article  CAS  Google Scholar 

  24. Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047. https://doi.org/10.1111/1574-6976.12075

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh S, Pramanik S (2021) Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 203:5281–5308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jandhyala SM, Talukdar R, Subramanyam C et al (2015) Role of the normal gut microbiota. World J Gastroenterol 21:8836–8847. https://doi.org/10.3748/wjg.v21.i29.8787

    Article  CAS  Google Scholar 

  27. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345

    Article  CAS  PubMed  Google Scholar 

  28. Abed-Meraim F, Combescure A (2011) New prismatic solid-shell element: assumed strain formulation and hourglass mode analysis. Struct Eng Mech 37:253–256. https://doi.org/10.12989/sem.2011.37.2.253

    Article  Google Scholar 

  29. Yang L, Lin H, Lin W, Xu X (2020) Exercise ameliorates insulin resistance of type 2 diabetes through motivating short-chain fatty acid-mediated skeletal muscle cell autophagy. Biology (Basel) 9:1–18. https://doi.org/10.3390/biology9080203

    Article  CAS  Google Scholar 

  30. Gajewski J, Pavlovic R, Fischer M et al (2017) Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun. https://doi.org/10.1038/ncomms14650

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen CY, Ho HC (2023) Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 35(4):279–289. https://doi.org/10.4103/tcmj.tcmj_86_23. PMID: 38035063; PMCID: PMC10683521

    Article  PubMed  PubMed Central  Google Scholar 

  32. Attila T, Adsay V, Faigel DO (2019) Response to: The efficacy and safety of endoscopic ultrasound-guided ablation of pancreatic cysts with alcohol and paclitaxel: a systematic review. Eur J Gastroenterol Hepatol 31:1475

    Article  CAS  PubMed  Google Scholar 

  33. Yan S, Shi R, Li L et al (2019) Mannan oligosaccharide suppresses lipid accumulation and appetite in western-diet-induced obese mice via reshaping gut microbiome and enhancing short-chain fatty acids production. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201900521

    Article  PubMed  Google Scholar 

  34. Szczuko M, Kikut J, Maciejewska D et al (2020) The associations of SCFA with anthropometric parameters and carbohydrate metabolism in pregnant women. Int J Mol Sci 21:1–12. https://doi.org/10.3390/ijms21239212

    Article  CAS  Google Scholar 

  35. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262. PMID: 18812643

    PubMed  Google Scholar 

  36. Hamer HM, Jonkers D, Venema K et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  PubMed  Google Scholar 

  37. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185. https://doi.org/10.3389/fmicb.2016.00185. PMID: 26925050; PMCID: PMC4756104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Machiels K, Joossens M, Sabino J et al (2014) A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1275–1283. https://doi.org/10.1136/gutjnl-2013-304833

    Article  CAS  PubMed  Google Scholar 

  39. Den Besten G, Van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340

    Article  Google Scholar 

  40. Torres PJ, Siakowska M, Banaszewska B et al (2018) Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2017-02153/4822208

    Article  PubMed  PubMed Central  Google Scholar 

  41. He S, Li H, Yu Z, Zhang F, Liang S, Liu H, Chen H, Lü M (2021) The gut microbiome and sex hormone-related diseases. Front Microbiol 12:711137. https://doi.org/10.3389/fmicb.2021.711137. PMID: 34650525; PMCID: PMC8506209

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kwa M, Plottel CS, Blaser MJ, Adams S (2016) The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst 108(8):dgw029. https://doi.org/10.1093/jnci/djw029. PMID: 27107051; PMCID: PMC5017946

    Article  CAS  Google Scholar 

  43. Liao B, Qiao J, Pang Y (2021) Central regulation of PCOS: Abnormal neuronal-reproductive-metabolic circuits in PCOS pathophysiology. Front Endocrinol (Lausanne) 12:667422. https://doi.org/10.3389/fendo.2021.667422. PMID: 34122341; PMCID: PMC8194358

    Article  PubMed  Google Scholar 

  44. Yoon K, Kim N (2021) Roles of sex hormones and gender in the Gut Microbiota. J Neurogastroenterol Motil 27:314–325

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tao H, Shi KH, Yang JJ et al (2014) Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal 26:521–527

    Article  CAS  PubMed  Google Scholar 

  46. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252. https://doi.org/10.1073/pnas.1322269111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bindels LB, Dewulf EM, Delzenne NM (2013) GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 34:226–232

    Article  CAS  PubMed  Google Scholar 

  48. van der Hee B, Wells JM (2021) Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol 29:700–712

    Article  PubMed  Google Scholar 

  49. Zaky A, Glastras SJ, Wong MYW, Pollock CA, Saad S (2021) The role of the gut microbiome in diabetes and obesity-related kidney disease. Int J Mol Sci 22(17):9641. https://doi.org/10.3390/ijms22179641. PMID: 34502562; PMCID: PMC8431784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9. PMID: 24388214

    Article  CAS  PubMed  Google Scholar 

  51. Pluznick JL (2016) Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int 90:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Balducci S, Sacchetti M, Haxhi J et al (2014) Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev 30:13–23

    Article  PubMed  Google Scholar 

  53. Sikalidis AK, Maykish A (2020) The gut microbiome and Type 2 diabetes mellitus: Discussing a complex relationship. Biomedicines 8(1):8. https://doi.org/10.3390/biomedicines8010008. PMID: 31936158; PMCID: PMC7168169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Farid NR, Diamanti-Kandarakis E (2009) Diagnosis and management of polycystic ovary syndrome. Springer, US

    Book  Google Scholar 

  55. Stovall DW, Bailey AP, Pastore LM (2011) Assessment of insulin resistance and impaired glucose tolerance in lean women with polycystic ovary syndrome. J Womens Health (Larchmt) 20(1):37–43. https://doi.org/10.1089/jwh.2010.2053. Epub 2010 Dec 31. PMID: 21194310; PMCID: PMC3026650

    Article  PubMed  Google Scholar 

  56. Rittiphairoj T, Pongpirul K, Mueller NT, Li T (2019) Probiotics for glycemic control in patients with type 2 diabetes mellitus: protocol for a systematic review. Syst Rev 8(1):227. https://doi.org/10.1186/s13643-019-1145-y. PMID: 31481125; PMCID: PMC6720889

    Article  PubMed  PubMed Central  Google Scholar 

  57. Freeland KR, Wolever TMS (2010) Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. Br J Nutr 103:460–466. https://doi.org/10.1017/S0007114509991863

    Article  CAS  PubMed  Google Scholar 

  58. Pane M, Amoruso A, Deidda F et al (2018) Gut microbiota, probiotics, and sport from clinical evidence to agonistic performance. J Clin Gastroenterol 52:S46–S49. https://doi.org/10.1097/MCG.0000000000001058

    Article  PubMed  Google Scholar 

  59. Lindheim L, Bashir M, Münzker J et al (2017) Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS One. https://doi.org/10.1371/journal.pone.0168390

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rizk MG, Thackray VG (2020) Intersection of Polycystic Ovary Syndrome and the Gut Microbiome. J Endocr Soc 5(2):bvaa177. https://doi.org/10.1210/jendso/bvaa177. PMID: 33381671; PMCID: PMC7757431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Insenser M, Murri M, Del Campo R, Martínez-García MÁ, Fernández-Durán E, Escobar-Morreale HF (2018) Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab 103(7):2552–2562. https://doi.org/10.1210/jc.2017-02799. PMID: 29897462

    Article  PubMed  Google Scholar 

  62. Lozupone CA, Li M, Campbell TB et al (2013) Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14:329–339. https://doi.org/10.1016/j.chom.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  63. Zhang J, Sun Z, Jiang S et al (2019) Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. mSystems. https://doi.org/10.1128/msystems.00017-19

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chu W, Han Q, Xu J et al (2020) Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome. Fertil Steril 113:1286–1298.e4. https://doi.org/10.1016/j.fertnstert.2020.01.027

    Article  CAS  PubMed  Google Scholar 

  65. Layden BT, Yalamanchi SK, Wolever TMS et al (2012) Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes, Metabolic Syndrome and Obesity 5:49–55. https://doi.org/10.2147/DMSO.S29244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Markowiak-Kopeć P, Śliżewska K (2020) The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12

  67. Stärkel P, Leclercq S, de Timary P, Schnabl B (2018) Intestinal dysbiosis and permeability: the yin and yang in alcohol dependence and alcoholic liver disease. Clin Sci 132:199–212

    Article  Google Scholar 

  68. Wang H, Wei CX, Min L, Zhu LY (2018) Good or bad: gut bacteria in human health and diseases. Biotechnol Biotechnol Equip 32:1075–1080

    Article  CAS  Google Scholar 

  69. Dong ZJ, Lv WQ, Zhang CY, Chen S (2022) Correlation analysis of gut microbiota and serum metabolome with Porphyromonas gingivalis-induced metabolic disorders. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.858902

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772. https://doi.org/10.2337/db06-1491. Epub 2007 Apr 24 PMID: 17456850

    Article  CAS  PubMed  Google Scholar 

  71. Guo Y, Qi Y, Yang X et al (2016) Association between polycystic ovary syndrome and gut microbiota. PLoS One. https://doi.org/10.1371/journal.pone.0153196

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ley RE (2016) Gut microbiota in 2015: Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol 13:69

    Article  CAS  PubMed  Google Scholar 

  73. Patel S (2018) Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol 182:27–36. https://doi.org/10.1016/j.jsbmb.2018.04.008. Epub 2018 Apr 17. PMID: 29678491

    Article  CAS  PubMed  Google Scholar 

  74. Probiotic Bifidobacterium lactis V9 regulates the intestinal microbiome in patients with polycystic ovary syndrome. Zhang J, Sun Z, Jiang S, Bai X, Ma C, Peng Q, Chen K, Chang H, Fang T, Zhang H (2019) Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain Axis. Am Soc Microbiol 4:360–368. https://doi.org/10.1360/N972018-00587

  75. Sola-Leyva A, Pérez-Prieto I, Molina NM et al (2023) Microbial composition across body sites in polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biomed Online 47:129–150. https://doi.org/10.1016/j.rbmo.2023.03.016

    Article  CAS  PubMed  Google Scholar 

  76. Palframan RJ, Gibson GR, Rastall RA (2003) Carbohydrate preferences of Bifidobacterium species isolated from the human gut. Curr Issues Intest Microbiol 4:71–75

    CAS  PubMed  Google Scholar 

  77. Gan J, Chen J, Ma RL et al (2023) Metagenomics study on taxonomic and functional change of gut microbiota in patients with obesity with PCOS treated with exenatide combination with metformin or metformin alone. Gynecol Endocrinol. https://doi.org/10.1080/09513590.2023.2219342

    Article  PubMed  Google Scholar 

  78. Gomez-Arango LF, Barrett HL, Wilkinson SA et al (2018) Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9:189–201. https://doi.org/10.1080/19490976.2017.1406584

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zeng B, Lai Z, Sun L et al (2019) Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study. Res Microbiol 170:43–52. https://doi.org/10.1016/j.resmic.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  80. Qi X, Yun C, Sun L et al (2019) Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 25:1225–1233. https://doi.org/10.1038/s41591-019-0509-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chu W, Han Q, Xu J et al (2020) Metagenomic analysis identified intestinal microbiota and polycystic pathological association between microbiome alterations and ovary syndrome. Fertil Steril 113:1286–1298.e4. https://doi.org/10.1016/j.fertnstert.2020.01.027

    Article  CAS  PubMed  Google Scholar 

  82. Haudum C, Lindheim L, Ascani A et al (2020) Impact of short-term isoflavone intervention in polycystic ovary syndrome (PCOS) patients on microbiota composition and metagenomics. Nutrients 12:1–22. https://doi.org/10.3390/nu12061622

    Article  CAS  Google Scholar 

  83. Pogribna M, Freeman JP, Paine D, Boudreau MD (2008) Effect of Aloe vera whole leaf extract on short chain fatty acids production by Bacteroides fragilis, Bifidobacterium infantis and Eubacterium limosum. Lett Appl Microbiol 46:575–580. https://doi.org/10.1111/j.1472-765X.2008.02346.x

    Article  CAS  PubMed  Google Scholar 

  84. Jobira B, Frank DN, Pyle L et al (2020) Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab 105:2134–2144. https://doi.org/10.1210/clinem/dgz263

    Article  Google Scholar 

  85. Torres PJ, Siakowska M, Banaszewska B et al (2018) Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab 103:1502–1511. https://doi.org/10.1210/jc.2017-02153

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gomez-Arango LF, Barrett HL, McIntyre HD et al (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68:974–981. https://doi.org/10.1161/HYPERTENSIONAHA.116.07910

    Article  CAS  PubMed  Google Scholar 

  87. Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A (2021) Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 13(1):1922241. https://doi.org/10.1080/19490976.2021.1922241. PMID: 34196581; PMCID: PMC8253142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Amano A (2007) Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis. Front Biosci 12:3965–3974. https://doi.org/10.2741/2363

    Article  CAS  PubMed  Google Scholar 

  89. Dong ZJ, Lv WQ, Zhang CY, Chen S (2022) Correlation analysis of gut microbiota and serum metabolome with Porphyromonas gingivalis-induced metabolic disorders. Front Cell Infect Microbiol 12:1–13. https://doi.org/10.3389/fcimb.2022.858902

    Article  CAS  Google Scholar 

  90. Le ARTIC, Torres PJ, Siakowska M et al (2018) Gut microbial diversity in women with polycystic ovary. 103:1502–1511. https://doi.org/10.1210/jc.2017-02153

  91. Zhou L, Ni Z, Cheng W et al (2020) Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr Connect 9:63–73. https://doi.org/10.1530/EC-19-0522

    Article  CAS  PubMed  Google Scholar 

  92. Li A, li, Ni W wei, Zhang Q min, et al (2020) Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol 64:23–32. https://doi.org/10.1111/1348-0421.12749

    Article  CAS  PubMed  Google Scholar 

  93. Chen T, Long W, Zhang C et al (2017) Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 7:1–7. https://doi.org/10.1038/s41598-017-02995-4

    Article  ADS  CAS  Google Scholar 

  94. Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, Ling Y, Fu H, Dong W, Shen J, Reeves A, Greenberg AS, Zhao L, Peng Y, Ding X (2017) Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol 8:324. https://doi.org/10.3389/fmicb.2017.00324. PMID: 28293234; PMCID: PMC5328957

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li P, Shuai P, Shen S et al (2023) Perturbations in gut microbiota composition in patients with polycystic ovary syndrome: a systematic review and meta-analysis. BMC Med 21:302. https://doi.org/10.1186/s12916-023-02975-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao H, Chen R, Zheng D et al (2022) Modified Banxia Xiexin decoction ameliorates polycystic ovarian syndrome with insulin resistance by regulating intestinal microbiota. Front Cell Infect Microbiol 12:1–12. https://doi.org/10.3389/fcimb.2022.854796

    Article  CAS  Google Scholar 

  97. Mehdizadeh Gohari I, A. Navarro M, Li J et al (2021) Pathogenicity and virulence of Clostridium perfringens. Virulence 12:723–753. https://doi.org/10.1080/21505594.2021.1886777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang J, Sun Z, Jiang S et al (2019) Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. mSystems. https://doi.org/10.1128/msystems.00017-19

    Article  PubMed  PubMed Central  Google Scholar 

  99. Devaux CA, Million M, Raoult D (2020) The butyrogenic and lactic bacteria of the gut microbiota determine the outcome of allogenic hematopoietic cell transplant. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01642

    Article  PubMed  PubMed Central  Google Scholar 

  100. Le ARTIC, Murri M, Campo R et al (2018) Gut microbiota and the polycystic ovary syndrome: Influence of sex, sex hormones, and obesity. 103:2552–2562. https://doi.org/10.1210/jc.2017-02799

  101. Stewart ML, Savarino V, Slavin JL (2009) Assessment of dietary fiber fermentation : effect of Lactobacillus reuteri and reproducibility of short-chain fatty acid concentrations. Nutr Food Res 83:114–120. https://doi.org/10.1002/mnfr.200700523

    Article  Google Scholar 

  102. Liang Y, Ming Q, Liang J et al (2020) Gut microbiota dysbiosis in polycystic ovary syndrome: association with obesity — a preliminary report. Can J Physiol Pharmacol 98:803–809. https://doi.org/10.1139/cjpp-2019-0413

    Article  CAS  PubMed  Google Scholar 

  103. Sonomoto KTAKK, Stanbury AISJHPF (2002) Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Microbiol Biotechnol 60:160–167. https://doi.org/10.1007/s00253-002-1078-5

    Article  CAS  Google Scholar 

  104. Iyer R, Tomar SK, Maheswari TU, Singh R (2010) Streptococcus thermophilus strains : multifunctional lactic acid bacteria. Int Dairy J 20:133–141. https://doi.org/10.1016/j.idairyj.2009.10.005

    Article  CAS  Google Scholar 

  105. Boisen N, Krogfelt KA, Nataro JP (2005) Enteroaggregative Escherichia coli Gastrointestinal infections nization 2:4–8. https://doi.org/10.1016/B978-0-12-397048-0.00008-5

    Article  Google Scholar 

  106. Killackey SA, Sorbara MT, Girardin SE (2016) Cellular aspects of Shigella pathogenesis: focus on the manipulation of host cell processes. Front Cell Infect Microbiol 6:38. https://doi.org/10.3389/fcimb.2016.00038. PMID: 27066460; PMCID: PMC4814626

    Article  CAS  Google Scholar 

  107. Sherman SB, Sarsour N, Salehi M et al (2018) Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes 9:400–421. https://doi.org/10.1080/19490976.2018.1441664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Herman R, Sikonja J, Jensterle M et al (2023) Insulin metabolism in polycystic ovary syndrome: Secretion, signaling, and clearance. Int J Mol Sci 24

  109. Fauser BCJM, Tarlatzis F et al (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Hum Reprod 19:41–47

    Article  Google Scholar 

  110. Diamanti-Kandarakis E, Dunaif A (2012) Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33:981–1030. https://doi.org/10.1210/er.2011-1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, Welt CK; Endocrine Society (2013) Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 98(12):4565–4592. https://doi.org/10.1210/jc.2013-2350. Epub 2013 Oct 22. Erratum in: J Clin Endocrinol Metab. 2021 May 13;106(6):e2462. PMID: 24151290; PMCID: PMC5399492

    Article  CAS  Google Scholar 

  112. Barrea L, Marzullo P, Muscogiuri G, Di Somma C, Scacchi M, Orio F, Aimaretti G, Colao A, Savastano S (2018) Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr Res Rev 31(2):291–301. https://doi.org/10.1017/S0954422418000136. Epub 2018 Jul 23. PMID: 30033891

    Article  CAS  PubMed  Google Scholar 

  113. Scheithauer TPM, Dallinga-Thie GM, de Vos WM et al (2016) Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab 5:759–770. https://doi.org/10.1016/j.molmet.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165

    Article  CAS  PubMed  Google Scholar 

  115. Jiao N, Baker SS, Nugent CA et al (2018) Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics 50:244–254. https://doi.org/10.1152/physiolgenomics.00114

    Article  CAS  PubMed  Google Scholar 

  116. Belani M, Deo A, Shah P et al (2018) Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells—a study in PCOS patients. J Steroid Biochem Mol Biol 178:283–292. https://doi.org/10.1016/j.jsbmb.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  117. Calcaterra V, Verduci E, Cena H, Magenes VC, Todisco CF, Tenuta E, Gregorio C, De Giuseppe R, Bosetti A, Di Profio E, Zuccotti G (2021) Polycystic ovary syndrome in insulin-resistant adolescents with obesity: the role of nutrition therapy and food supplements as a strategy to protect fertility. Nutrients 13(6):1848. https://doi.org/10.3390/nu13061848. PMID: 34071499; PMCID: PMC8228678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim CH, Chon SJ, Lee SH (2020) Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: a systematic review and meta-analysis. Sci Rep. https://doi.org/10.1038/s41598-020-64776-w

    Article  PubMed  PubMed Central  Google Scholar 

  119. Marinova VY, Rasheva IK, Kizheva YK et al (2019) Microbiological quality of probiotic dietary supplements. Biotechnol Biotechnol Equip 33:834–841. https://doi.org/10.1080/13102818.2019.1621208

    Article  CAS  Google Scholar 

  120. AlHussain F, AlRuthia Y, Al-Mandeel H, Bellahwal A, Alharbi F, Almogbel Y, Awwad O, Dala’een R, Alharbi FA (2020) Metformin improves the depression symptoms of women with polycystic ovary syndrome in a lifestyle modification program. Patient Prefer Adherence 14:737–746. https://doi.org/10.2147/PPA.S244273. PMID: 32346286; PMCID: PMC7167265

    Article  PubMed  PubMed Central  Google Scholar 

  121. Senok AC, Ismaeel AY, Botta GA (2005) Probiotics: facts and myths. Clin Microbiol Infect 11:958–966

    Article  CAS  PubMed  Google Scholar 

  122. Judkins TC, Archer DL, Kramer DC, Solch RJ (2020) Probiotics, Nutrition, and the Small Intestine. Curr Gastroenterol Rep 22(1):2. https://doi.org/10.1007/s11894-019-0740-3. PMID: 31930437

    Article  PubMed  Google Scholar 

  123. Mills S, Stanton C, Fitzgerald GF, Ross P (2011) Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again

  124. Thomas CM, Versalovic J (2010) Probiotics-host communication modulation of signaling pathways in the intestine. Gut Microbes 1:1–16

    Article  Google Scholar 

  125. Cozzolino M, Vitagliano A, Pellegrini L et al (2020) Therapy with probiotics and synbiotics for polycystic ovarian syndrome: a systematic review and meta-analysis. Eur J Nutr 59:2841–2856

    Article  PubMed  Google Scholar 

  126. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591. https://doi.org/10.1038/nrendo.2015.128. Epub 2015 Aug 11. PMID: 26260141

    Article  CAS  PubMed  Google Scholar 

  127. Hernández MAG, Canfora EE, Jocken JWE, Blaak EE (2019) The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11(8):1943. https://doi.org/10.3390/nu11081943. PMID: 31426593; PMCID: PMC6723943

    Article  CAS  PubMed  Google Scholar 

  128. Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517. https://doi.org/10.2337/db08-1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Karamali M, Eghbalpour S, Rajabi S et al (2018) Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial

  130. Alihosseini N, Moahboob SA, Farrin N et al (2017) Effect of probiotic fermented milk (KEFIR) on serum level of insulin and homocysteine in type 2 diabetes patients. Acta Endocrinol (Copenh) 13:431–436. https://doi.org/10.4183/aeb.2017.431

    Article  CAS  Google Scholar 

  131. Wang X, Wan M, Wang Z et al (2023) Effects of tributyrin supplementation on growth performance, intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of Large Yellow Croaker (Larimichthys crocea) fed with a high level of Clostridium autoethanogenum protein. Aquac Nutr. https://doi.org/10.1155/2023/2687734

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tedelind S, Westberg F, Kjerrulf M, Vidal A (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease clinical research. World J Gastroenterol 13:2826–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3:858–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Serhan M, Sprowls M, Jackemeyer D et al (2019) Total iron measurement in human serum with a smartphone. In: AIChE Annual Meeting, Conference Proceedings. American Institute of Chemical Engineers

  135. Shamasbi SG, Ghanbari-Homayi S, Mirghafourvand M (2020) The effect of probiotics, prebiotics, and synbiotics on hormonal and inflammatory indices in women with polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Nutr 59:433–450

    Article  PubMed  Google Scholar 

  136. Rashad NM, El-Shal AS, Amin AI, Soliman MH (2017) Effects of probiotics supplementation on macrophage migration inhibitory factor and clinical laboratory feature of polycystic ovary syndrome. J Funct Foods 36:317–324. https://doi.org/10.1016/j.jff.2017.06.029

    Article  CAS  Google Scholar 

  137. Kobyliak N, Falalyeyeva T, Mykhalchyshyn G et al (2018) Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial. Diabetes Metab Syndr 12:617–624. https://doi.org/10.1016/j.dsx.2018.04.015

    Article  PubMed  Google Scholar 

  138. Bä ckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage

  139. Aponte M, Murru N, Shoukat M (2020) Therapeutic, prophylactic, and functional use of probiotics: a current perspective. Front Microbiol 11

Download references

Acknowledgements

The last author acknowledges the Chinese Ministry of Science and Technology “Belt and Road” Innovative Talent Exchange Foreign Expert Project (Grant Number DL2023003001L).

Author information

Authors and Affiliations

Authors

Contributions

Samaneh Salehi: Writing—original draft; Investigation. Javad Allahverdy: Graphical designing; Writing—original draft. Hadi Pourjafar: Writing—original draft; Investigation. Khashayar Sarabandi: Review & editing. Seid Mahdi Jafari: Supervision; Validation; Review & editing.

Corresponding author

Correspondence to Seid Mahdi Jafari.

Ethics declarations

Competing of Interest

The authors declare no competing interests.

Graphics Program

All art works were designed on Adobe Photoshop (CC 2018).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, S., Allahverdy, J., Pourjafar, H. et al. Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10223-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10223-5

Keywords

Navigation