Skip to main content
Log in

Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies

  • Reproductive Biology: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a multifaceted disease with an intricate etiology affecting reproductive-aged women. Despite attempts to unravel the pathophysiology, the molecular mechanism of PCOS remains unknown. There are no effective or suitable therapeutic strategies available to ameliorate PCOS; however, the symptoms can be managed. In recent years, a strong association has been found between the gut microbiome and PCOS, leading to the formulation of novel ideas on the genesis and pathological processes of PCOS. Further, gut microbiome dysbiosis involving microbial metabolites may trigger PCOS symptoms via many mechanistic pathways including those associated with carbohydrates, short-chain fatty acids, lipopolysaccharides, bile acids, and gut–brain axis. We present the mechanistic pathways of PCOS-related microbial metabolites and therapeutic opportunities available to treat PCOS, such as prebiotics, probiotics, and fecal microbiota therapy. In addition, the current review highlights the emerging treatment strategies available to alleviate the symptoms of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data are available from the authors on request.

References

  1. Deswal R, Narwal V, Dang A, et al. The prevalence of polycystic ovary syndrome: A brief systematic review. J Hum Reprod Sci. 2020;13(4):261–71. https://doi.org/10.4103/jhrs.JHRS_95_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abdalla MA, Deshmukh H, Atkin S, et al. A review of therapeutic options for managing the metabolic aspects of polycystic ovary syndrome. Ther Adv Endocrinol Metab. 2020;11:2042018820938305. https://doi.org/10.1177/2042018820938305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang S, Li X, Yang F, et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol. 2019;10:1360. https://doi.org/10.3389/fphar.2019.01360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kriaa A, Mariaule V, Jablaoui A, et al. Bile acids: Key players in inflammatory bowel diseases? Cells. 2022;11(5) https://doi.org/10.3390/cells11050901.

  5. Liang D, Leung RK, Guan W, et al. Involvement of gut microbiome in human health and disease: Brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018;10:3. https://doi.org/10.1186/s13099-018-0230-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008;57(11):1605–15. https://doi.org/10.1136/gut.2007.133603.

    Article  CAS  PubMed  Google Scholar 

  7. Li P, Shuai P, Shen S, et al. Perturbations in gut microbiota composition in patients with polycystic ovary syndrome: A systematic review and meta-analysis. BMC Med. 2023;21(1):302. https://doi.org/10.1186/s12916-023-02975-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. https://doi.org/10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu R, Zhang C, Shi Y, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol. 2017;8:324. https://doi.org/10.3389/fmicb.2017.00324.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thackray VG. Sex, microbes, and polycystic ovary syndrome. Trends Endocrinol Metab. 2019;30(1):54–65. https://doi.org/10.1016/j.tem.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  12. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36. https://doi.org/10.1042/BCJ20160510.

    Article  CAS  PubMed  Google Scholar 

  13. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151(4):363–74. https://doi.org/10.1111/imm.12760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin W, Wen L, Wen J, et al. Effects of sleeve gastrectomy on fecal gut microbiota and short-chain fatty acid content in a rat model of polycystic ovary syndrome. Front Endocrinol (Lausanne). 2021;12:747888. https://doi.org/10.3389/fendo.2021.747888.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qi X, Yun C, Sun L, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25(8):1225–33. https://doi.org/10.1038/s41591-019-0509-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu S, Ding Q, Zhang W, et al. Gut microbial beta-glucuronidase: A vital regulator in female estrogen metabolism. Gut Microbes. 2023;15(1):2236749. https://doi.org/10.1080/19490976.2023.2236749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ozegowska K, Korman M, Szmyt A, et al. Heterogeneity of endocrinologic and metabolic parameters in reproductive age polycystic ovary syndrome (PCOS) women concerning the severity of hyperandrogenemia—a new insight on syndrome pathogenesis. Int J Environ Res Public Health. 2020;17(24) https://doi.org/10.3390/ijerph17249291.

  18. Corrie L, Awasthi A, Kaur J, et al. Interplay of gut microbiota in polycystic ovarian syndrome: Role of gut microbiota, mechanistic pathways and potential treatment strategies. Pharmaceuticals (Basel). 2023;16(2) https://doi.org/10.3390/ph16020197.

  19. Wang L, Zhou J, Gober HJ, et al. Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype. Biomed Pharmacother. 2021;133:110958. https://doi.org/10.1016/j.biopha.2020.110958.

    Article  CAS  PubMed  Google Scholar 

  20. Org E, Mehrabian M, Parks BW, et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016;7(4):313–22. https://doi.org/10.1080/19490976.2016.1203502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol. 2021;61:100912. https://doi.org/10.1016/j.yfrne.2021.100912.

    Article  CAS  PubMed  Google Scholar 

  22. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7. https://doi.org/10.1038/nature11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yurkovetskiy L, Burrows M, Khan AA, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–12. https://doi.org/10.1016/j.immuni.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  24. Choi S, Hwang YJ, Shin MJ, et al. Difference in the gut microbiome between ovariectomy-induced obesity and diet-induced obesity. J Microbiol Biotechnol. 2017;27(12):2228–36. https://doi.org/10.4014/jmb.1710.10001.

    Article  CAS  PubMed  Google Scholar 

  25. Cox-York KA, Sheflin AM, Foster MT, et al. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats. Physiol Rep. 2015;3(8) https://doi.org/10.14814/phy2.12488.

  26. Harada N, Hanaoka R, Horiuchi H, et al. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Sci Rep. 2016;6:23001. https://doi.org/10.1038/srep23001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adlercreutz H, Pulkkinen MO, Hamalainen EK, et al. Studies on the role of intestinal bacteria in metabolism of synthetic and natural steroid hormones. J Steroid Biochem. 1984;20(1):217–29. https://doi.org/10.1016/0022-4731(84)90208-5.

    Article  CAS  PubMed  Google Scholar 

  28. Pellock SJ, Redinbo MR. Glucuronides in the gut: Sugar-driven symbioses between microbe and host. J Biol Chem. 2017;292(21):8569–76. https://doi.org/10.1074/jbc.R116.767434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pace F, Watnick PI. The interplay of sex steroids, the immune response, and the intestinal microbiota. Trends Microbiol. 2021;29(9):849–59. https://doi.org/10.1016/j.tim.2020.11.001.

    Article  CAS  PubMed  Google Scholar 

  30. Menon R, Watson SE, Thomas LN, et al. Diet complexity and estrogen receptor beta status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol. 2013;79(18):5763–73. https://doi.org/10.1128/AEM.01182-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Catalano MG, Pfeffer U, Raineri M, et al. Altered expression of androgen-receptor isoforms in human colon-cancer tissues. Int J Cancer. 2000;86(3):325–30. https://doi.org/10.1002/(sici)1097-0215(20000501)86:3<325::aid-ijc4>3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  32. Elderman M, de Vos P, Faas M. Role of microbiota in sexually dimorphic immunity. Front Immunol. 2018;9:1018. https://doi.org/10.3389/fimmu.2018.01018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laffont S, Seillet C, Guery JC. Estrogen receptor-dependent regulation of dendritic Cell development and function. Front Immunol. 2017;8:108. https://doi.org/10.3389/fimmu.2017.00108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fransen F, van Beek AA, Borghuis T, et al. The impact of gut microbiota on gender-specific differences in immunity. Front Immunol. 2017;8:754. https://doi.org/10.3389/fimmu.2017.00754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li JY, Chassaing B, Tyagi AM, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049–63. https://doi.org/10.1172/JCI86062.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lindheim L, Bashir M, Munzker J, et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. Plos One. 2017;12(1):e0168390. https://doi.org/10.1371/journal.pone.0168390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Sun Z, Jiang S, et al. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. mSystems. 2019;4(2) https://doi.org/10.1128/mSystems.00017-19.

  38. d'Afflitto M, Upadhyaya A, Green A, et al. Association between sex hormone levels and gut microbiota composition and diversity-a systematic review. J Clin Gastroenterol. 2022;56(5):384–92. https://doi.org/10.1097/MCG.0000000000001676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou L, Ni Z, Cheng W, et al. Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr Connect. 2020;9(1):63–73. https://doi.org/10.1530/EC-19-0522.

    Article  CAS  PubMed  Google Scholar 

  40. Jobira B, Frank DN, Pyle L, et al. Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab. 2020;105(6):e2134–44. https://doi.org/10.1210/clinem/dgz263.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zeng B, Lai Z, Sun L, et al. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): A pilot study. Res Microbiol. 2019;170(1):43–52. https://doi.org/10.1016/j.resmic.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  42. Liang Y, Ming Q, Liang J, et al. Gut microbiota dysbiosis in polycystic ovary syndrome: Association with obesity—a preliminary report. Can J Physiol Pharmacol. 2020;98(11):803–9. https://doi.org/10.1139/cjpp-2019-0413.

    Article  CAS  PubMed  Google Scholar 

  43. Kelley ST, Skarra DV, Rivera AJ, et al. The gut microbiome is altered in a letrozole-induced mouse model of polycystic ovary syndrome. Plos One. 2016;11(1):e0146509. https://doi.org/10.1371/journal.pone.0146509.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao H, Chen R, Zheng D, et al. Modified Banxia Xiexin decoction ameliorates polycystic ovarian syndrome with insulin resistance by regulating intestinal microbiota. Front Cell Infect Microbiol. 2022;12:854796. https://doi.org/10.3389/fcimb.2022.854796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo Y, Qi Y, Yang X, et al. Association between polycystic ovary syndrome and gut microbiota. Plos One. 2016;11(4):e0153196. https://doi.org/10.1371/journal.pone.0153196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng Y, Yu J, Liang C, et al. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng. 2021;44(5):953–64. https://doi.org/10.1007/s00449-020-02320-w.

    Article  CAS  PubMed  Google Scholar 

  47. Wang T, Sha L, Li Y, et al. Dietary alpha-linolenic acid-rich flaxseed oil exerts beneficial effects on polycystic ovary syndrome through sex steroid hormones-microbiota-inflammation axis in rats. Front Endocrinol (Lausanne). 2020;11:284. https://doi.org/10.3389/fendo.2020.00284.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arroyo P, Ho BS, Sau L, et al. Letrozole treatment of pubertal female mice results in activational effects on reproduction, metabolism and the gut microbiome. Plos One. 2019;14(9):e0223274. https://doi.org/10.1371/journal.pone.0223274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jang M, Lee MJ, Lee JM, et al. Oriental medicine Kyung-Ok-Ko prevents and alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats. Plos One. 2014;9(2):e87623. https://doi.org/10.1371/journal.pone.0087623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Benice TS, Raber J. Testosterone and dihydrotestosterone differentially improve cognition in aged female mice. Learn Mem. 2009;16(8):479–85. https://doi.org/10.1101/lm.1428209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan X, Hu T, Zhao H, et al. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proc Natl Acad Sci U S A. 2016;113(10):2708–13. https://doi.org/10.1073/pnas.1523236113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caldwell AS, Middleton LJ, Jimenez M, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155(8):3146–59. https://doi.org/10.1210/en.2014-1196.

    Article  CAS  PubMed  Google Scholar 

  53. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81. https://doi.org/10.1038/nature18646.

    Article  CAS  PubMed  Google Scholar 

  54. Tremellen K, Pearce K. Dysbiosis of gut microbiota (DOGMA)—a novel theory for the development of polycystic ovarian syndrome. Med Hypotheses. 2012;79(1):104–12. https://doi.org/10.1016/j.mehy.2012.04.016.

    Article  PubMed  Google Scholar 

  55. Hersoug LG, Moller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: Implications for inflammation and obesity. Obes Rev. 2016;17(4):297–312. https://doi.org/10.1111/obr.12370.

    Article  CAS  PubMed  Google Scholar 

  56. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9. https://doi.org/10.1172/JCI25102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72. https://doi.org/10.2337/db06-1491.

    Article  CAS  PubMed  Google Scholar 

  58. Andreasen AS, Larsen N, Pedersen-Skovsgaard T, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr. 2010;104(12):1831–8. https://doi.org/10.1017/S0007114510002874.

    Article  CAS  PubMed  Google Scholar 

  59. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–91. https://doi.org/10.1038/nrendo.2015.128.

    Article  CAS  PubMed  Google Scholar 

  60. Hamer HM, Jonkers D, Venema K, et al. Review article: The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19. https://doi.org/10.1111/j.1365-2036.2007.03562.x.

    Article  CAS  PubMed  Google Scholar 

  61. Murugesan S, Nirmalkar K, Hoyo-Vadillo C, et al. Gut microbiome production of short-chain fatty acids and obesity in children. Eur J Clin Microbiol Infect Dis. 2018;37(4):621–5. https://doi.org/10.1007/s10096-017-3143-0.

    Article  CAS  PubMed  Google Scholar 

  62. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17. https://doi.org/10.2337/db08-1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma C, Peng Q, Jiang S, Chen K, Fang Y, Zhang J. Probiotic Bifidobacterium lactis V9 regulates the intestinal microbiome in patients with polycystic ovary syndrome. Chin Sci Bull (Chinese Version). 2019;64(3):360–8. https://doi.org/10.1360/N972018-00587.

    Article  Google Scholar 

  64. Flint HJ, Scott KP, Duncan SH, et al. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306. https://doi.org/10.4161/gmic.19897.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kocelak P, Zak-Golab A, Zahorska-Markiewicz B, et al. Resting energy expenditure and gut microbiota in obese and normal weight subjects. Eur Rev Med Pharmacol Sci. 2013;17(20):2816–21.

    CAS  PubMed  Google Scholar 

  66. Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. https://doi.org/10.1126/scitranslmed.3000322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dadachanji R, Shaikh N, Mukherjee S. Genetic variants associated with hyperandrogenemia in PCOS pathophysiology. Genet Res Int. 2018;2018:7624932. https://doi.org/10.1155/2018/7624932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Torres PJ, Siakowska M, Banaszewska B, et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. 2018;103(4):1502–11. https://doi.org/10.1210/jc.2017-02153.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond). 2013;124(8):491–507. https://doi.org/10.1042/CS20120536.

    Article  CAS  PubMed  Google Scholar 

  70. Stahmann N, Woods A, Spengler K, et al. Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J Biol Chem. 2010;285(14):10638–52. https://doi.org/10.1074/jbc.M110.108688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Okoshi R, Ozaki T, Yamamoto H, et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008;283(7):3979–87. https://doi.org/10.1074/jbc.M705232200.

    Article  CAS  PubMed  Google Scholar 

  72. Khamis NH, Ibrahim RA, Rifaai RA, Gamal NF, et al. The role of AMP-activated protein Kinase (AMPK) in pathogenesis of polycystic ovary syndrome. Minia J Med Res. 2023;34:47–56. https://doi.org/10.21608/mjmr.2023.211602.1399.

    Article  Google Scholar 

  73. den Besten G, Lange K, Havinga R, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 2013;305(12):900–10. https://doi.org/10.1152/ajpgi.00265.2013.

    Article  CAS  Google Scholar 

  74. Mollica MP, Mattace Raso G, Cavaliere G, et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes. 2017;66(5):1405–18. https://doi.org/10.2337/db16-0924.

    Article  CAS  PubMed  Google Scholar 

  75. Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7(4):2930–46. https://doi.org/10.3390/nu7042930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ericksen RE, Lim SL, McDonnell E, et al. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metab. 2019;29(5):1151–1165 e6. https://doi.org/10.1016/j.cmet.2018.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45. https://doi.org/10.1016/j.cell.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  78. Au CC, Docanto MM, Zahid H, et al. Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells. J Steroid Biochem Mol Biol. 2017;170:49–53. https://doi.org/10.1016/j.jsbmb.2016.07.005.

    Article  CAS  PubMed  Google Scholar 

  79. Novelle MG, Vazquez MJ, Martinello KD, et al. Neonatal events, such as androgenization and postnatal overfeeding, modify the response to ghrelin. Sci Rep. 2014;4:4855. https://doi.org/10.1038/srep04855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao T, Wu L, Chang F, et al. Low circulating ghrelin levels in women with polycystic ovary syndrome: A systematic review and meta-analysis. Endocr J. 2016;63(1):93–100. https://doi.org/10.1507/endocrj.EJ15-0318.

    Article  CAS  PubMed  Google Scholar 

  81. Moreno-Indias I, Sanchez-Alcoholado L, Sanchez-Garrido MA, et al. Neonatal androgen exposure causes persistent gut microbiota dysbiosis related to metabolic disease in adult female rats. Endocrinology. 2016;157(12):4888–98. https://doi.org/10.1210/en.2016-1317.

    Article  CAS  PubMed  Google Scholar 

  82. Schiattarella GG, Sannino A, Toscano E, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–56. https://doi.org/10.1093/eurheartj/ehx342.

    Article  CAS  PubMed  Google Scholar 

  83. Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16(3):137–54. https://doi.org/10.1038/s41569-018-0108-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shan Z, Sun T, Huang H, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. 2017;106(3):888–94. https://doi.org/10.3945/ajcn.117.157107.

    Article  CAS  PubMed  Google Scholar 

  85. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Heianza Y, Sun D, Li X, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: The POUNDS Lost trial. Gut. 2019;68(2):263–70. https://doi.org/10.1136/gutjnl-2018-316155.

    Article  CAS  PubMed  Google Scholar 

  87. Takahashi N, Harada M, Hirota Y, et al. Activation of Endoplasmic reticulum stress in granulosa cells from patients with polycystic ovary syndrome contributes to ovarian fibrosis. Sci Rep. 2017;7(1):10824. https://doi.org/10.1038/s41598-017-11252-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen W, Pang Y. Metabolic syndrome and PCOS: Pathogenesis and the role of metabolites. Metabolites. 2021;11(12) https://doi.org/10.3390/metabo11120869.

  89. Eyupoglu ND, Caliskan Guzelce E, Acikgoz A, et al. Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol (Oxf). 2019;91(6):810–5. https://doi.org/10.1111/cen.14101.

    Article  CAS  PubMed  Google Scholar 

  90. Huang J, Liu L, Chen C, et al. PCOS without hyperandrogenism is associated with higher plasma Trimethylamine N-oxide levels. BMC Endocr Disord. 2020;20(1):3. https://doi.org/10.1186/s12902-019-0486-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin TL, Shu CC, Chen YM, et al. Like cures like: Pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome. Front Pharmacol. 2020;11:554. https://doi.org/10.3389/fphar.2020.00554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen Z, Ou H, Wu H, et al. Role of microRNA in the pathogenesis of polycystic ovary syndrome. DNA Cell Biol. 2019;38(8):754–62. https://doi.org/10.1089/dna.2019.4622.

    Article  CAS  PubMed  Google Scholar 

  93. Gupta M, S Y. A clinic biochemical study of status of fasting serum insulin and lipid profile in PCOS patients and to determine correlation between BMI and HOMA index in PCOS patients. Indian J Obstet Gynecol Res. 2021;8(3):305–9. https://doi.org/10.18231/j.ijogr.2021.065.

    Article  Google Scholar 

  94. Su C, Chen M, Huang H, et al. Testosterone enhances lipopolysaccharide-induced interleukin-6 and macrophage chemotactic protein-1 expression by activating the extracellular signal-regulated kinase 1/2/nuclear factor-kappaB signalling pathways in 3T3-L1 adipocytes. Mol Med Rep. 2015;12(1):696–704. https://doi.org/10.3892/mmr.2015.3401.

    Article  CAS  PubMed  Google Scholar 

  95. Sayin SI, Wahlstrom A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35. https://doi.org/10.1016/j.cmet.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  96. Kim JJ, Choi YM. Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci. 2013;56(3):137–42. https://doi.org/10.5468/ogs.2013.56.3.137.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Li S, Chu Q, Ma J, et al. Discovery of novel lipid profiles in PCOS: Do insulin and androgen oppositely regulate bioactive lipid production? J Clin Endocrinol Metab. 2017;102(3):810–21. https://doi.org/10.1210/jc.2016-2692.

    Article  PubMed  Google Scholar 

  98. Shindo K, Machida M, Fukumura M, et al. Omeprazole induces altered bile acid metabolism. Gut. 1998;42(2):266–71. https://doi.org/10.1136/gut.42.2.266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fujisaka S, Ussar S, Clish C, et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J Clin Invest. 2016;126(12):4430–43. https://doi.org/10.1172/JCI86674.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lang UE, Beglinger C, Schweinfurth N, et al. Nutritional aspects of depression. Cell Physiol Biochem. 2015;37(3):1029–43. https://doi.org/10.1159/000430229.

    Article  CAS  PubMed  Google Scholar 

  101. Engelstoft MS, Schwartz TW. Opposite regulation of ghrelin and glucagon-like peptide-1 by metabolite G-protein-coupled receptors. Trends Endocrinol Metab. 2016;27(9):665–75. https://doi.org/10.1016/j.tem.2016.07.001.

    Article  CAS  PubMed  Google Scholar 

  102. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. https://doi.org/10.1038/nature11552.

    Article  CAS  PubMed  Google Scholar 

  103. Houjeghani S, Pourghassem Gargari B, Farzadi L. Serum leptin and ghrelin levels in women with polycystic ovary syndrome: Correlation with anthropometric, metabolic, and endocrine parameters. Int. J Fertil Steril. 2012;6(2):117–26.

    Google Scholar 

  104. Moffett RC, Naughton V. Emerging role of GIP and related gut hormones in fertility and PCOS. Peptides. 2020;125:170233. https://doi.org/10.1016/j.peptides.2019.170233.

    Article  CAS  PubMed  Google Scholar 

  105. Corrie L, Gulati M, Awasthi A, et al. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact. 2022;368:110238. https://doi.org/10.1016/j.cbi.2022.110238.

    Article  CAS  PubMed  Google Scholar 

  106. Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3) https://doi.org/10.3390/foods8030092.

  107. Roshanravan N, Mahdavi R, Alizadeh E, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: A randomized double-blind, placebo-controlled trial. Horm Metab Res. 2017;49(11):886–91. https://doi.org/10.1055/s-0043-119089.

    Article  CAS  PubMed  Google Scholar 

  108. Torshizi FF, Chamani M, Khodaei HR, et al. Therapeutic effects of organic zinc on reproductive hormones, insulin resistance and mTOR expression, as a novel component, in a rat model of polycystic ovary syndrome. Iran J Basic Med Sci. 2020;23(1):36–45. https://doi.org/10.22038/IJBMS.2019.36004.8586.

    Article  Google Scholar 

  109. Xue J, Li X, Liu P, et al. Inulin and metformin ameliorate polycystic ovary syndrome via anti-inflammation and modulating gut microbiota in mice. Endocr J. 2019;66(10):859–70. https://doi.org/10.1507/endocrj.EJ18-0567.

    Article  CAS  PubMed  Google Scholar 

  110. Dehghan P, Gargari BP, Jafar-Abadi MA, et al. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized-controlled clinical trial. Int J Food Sci Nutr. 2014;65(1):117–23. https://doi.org/10.3109/09637486.2013.836738.

    Article  CAS  PubMed  Google Scholar 

  111. Liu Y, Lou X. Type 2 diabetes mellitus-related environmental factors and the gut microbiota: Emerging evidence and challenges. Clinics (Sao Paulo). 2020;75:e1277. https://doi.org/10.6061/clinics/2020/e1277.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bendiks ZA, Knudsen KEB, Keenan MJ, et al. Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutr Res. 2020;77:12–28. https://doi.org/10.1016/j.nutres.2020.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Halajzadeh J, Milajerdi A, Reiner Z, et al. Effects of resistant starch on glycemic control, serum lipoproteins and systemic inflammation in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled clinical trials. Crit Rev Food Sci Nutr. 2020;60(18):3172–84. https://doi.org/10.1080/10408398.2019.1680950.

    Article  CAS  PubMed  Google Scholar 

  114. Groeger D, O'Mahony L, Murphy EF, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013;4(4):325–39. https://doi.org/10.4161/gmic.25487.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rizk MG, Thackray VG. Intersection of polycystic ovary syndrome and the gut microbiome. J Endocr Soc. 2021;5(2):bvaa177. https://doi.org/10.1210/jendso/bvaa177.

    Article  CAS  PubMed  Google Scholar 

  116. Torres PJ, Ho BS, Arroyo P, et al. Exposure to a healthy gut microbiome protects against reproductive and metabolic dysregulation in a PCOS mouse model. Endocrinology. 2019;160(5):1193–204. https://doi.org/10.1210/en.2019-00050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E. American association of clinical endocrinologists, American college of endocrinology, and androgen excess and PCOS society disease state clinical review: Guide to the best practices in the evaluation and treatment of polycystic ovary syndrome—part 1. Endocrine Practice. 2015;11:1291–300.

    Article  Google Scholar 

  118. Christ JP, Cedars MI. Current guidelines for diagnosing PCOS. Diagnostics (Basel). 2023;13(6) https://doi.org/10.3390/diagnostics13061113.

  119. Helena Teede CTT, Laven J, Dokras A, Moran L, Piltonen T, Costello M, Boivin J, Redman L, Boyle J, Norman R, Mousa A, Joham A. International Evidence-based Guideline for the assessment and management of polycystic ovary syndrome 2023. National Health and Medical Research Council; 2023. p. 1–261.

    Google Scholar 

  120. Urias-Silvas JE, Cani PD, Delmee E, et al. Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br J Nutr. 2008;99(2):254–61. https://doi.org/10.1017/S0007114507795338.

    Article  CAS  PubMed  Google Scholar 

  121. Ojo O, Wang X, Ojo OO, et al. The effect of prebiotics and oral anti-diabetic agents on gut microbiome in patients with type 2 diabetes: A systematic review and network meta-analysis of randomised controlled trials. Nutrients. 2022;14(23) https://doi.org/10.3390/nu14235139.

  122. Lindsay KL, Kennelly M, Culliton M, et al. Probiotics in obese pregnancy do not reduce maternal fasting glucose: A double-blind, placebo-controlled, randomized trial (Probiotics in Pregnancy Study). Am J Clin Nutr. 2014;99(6):1432–9. https://doi.org/10.3945/ajcn.113.079723.

    Article  CAS  PubMed  Google Scholar 

  123. Ruth KS, Day FR, Tyrrell J. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26:252–8. https://doi.org/10.1038/s41591-020-0751-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cena H, Chiovato L, Nappi RE. Obesity, polycystic ovary syndrome, and infertility: A new avenue for GLP-1 receptor agonists. J Clin Endocrinol Metab. 2020;105(8):e2695–709. https://doi.org/10.1210/clinem/dgaa285.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Carmina E, Longo RA. Semaglutide treatment of excessive body weight in obese PCOS patients unresponsive to lifestyle programs. J Clin Med. 2023;12(18) https://doi.org/10.3390/jcm12185921.

  126. Elkind-Hirsch KE, Chappell N, Seidemann E, et al. Exenatide, dapagliflozin, or phentermine/topiramate differentially affect metabolic profiles in polycystic ovary syndrome. J Clin Endocrinol Metab. 2021;106(10):3019–33. https://doi.org/10.1210/clinem/dgab408.

    Article  PubMed  Google Scholar 

  127. Abbara A, Eng PC, Phylactou M, et al. Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders. J Clin Invest. 2020;130(12):6739–53. https://doi.org/10.1172/JCI139681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fraser GL, Obermayer-Pietsch B, Laven J, et al. Randomized controlled trial of neurokinin 3 receptor antagonist fezolinetant for treatment of polycystic ovary syndrome. J Clin Endocrinol Metab. 2021;106(9):e3519–32. https://doi.org/10.1210/clinem/dgab320.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management of the Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India, for providing the necessary facilities and encouragement to carry out this work.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Gnanasambandan Ramanathan contributed to the study’s conception and design. Devi Rajeswari, Ganesh V, Usha Rani, Sivaraman Dhanasekaran contributed to critical revision and comments. Soumik Das contributed to the selection of articles and extraction of data. The first draft of the manuscript was written by Achsha Babu and Gnanasambandan Ramanathan with critical comments and modified the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gnanasambandan Ramanathan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, A., Devi Rajeswari, V., Ganesh, V. et al. Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies. Reprod. Sci. 31, 1508–1520 (2024). https://doi.org/10.1007/s43032-023-01450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01450-2

Keywords

Navigation