Skip to main content
Log in

Gut Microbiome Composition in Polycystic Ovary Syndrome Adult Women: A Systematic Review and Meta-analysis of Observational Studies

  • Reproductive Endocrinology: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder that is frequently linked to anovulation in women who are experiencing infertility. Intestinal flora, also known as the “second genome” of the host, is closely associated with chronic metabolic diseases. Recently, there has been increasing attention on the connection between PCOS and the gut microbiome, and experiments have been conducted. However, the results were unsatisfactory and inconsistent. This review aims to provide a comprehensive overview of the literature investigating the associations between the gut microbiome and PCOS in adults. The goal is to identify whether there are changes in the composition of the gut microbiome in individuals with PCOS. This is the first systematic review to focus on functional alterations in the gut microbiome, which could provide insights into potential mechanisms of microbial involvement in the development of PCOS. We found that there was no significant change in gut microbiome biodiversity in PCOS. Meta-analyses of three studies revealed a significantly higher abundance of Proteobacteria (1.12, 95% CI, 0.21, 2.02, I2 = 0%) in adults with PCOS. At the genus level, Bacteroides, Enterococcus, and Escherichia-Shigella were found to be enriched in patients with PCOS. Species such as Ruminococcus gnavus group, Parabacteroides distasonis, and Bacteroides fragilis showed an increase in PCOS. Metabolic pathways associated with glucose, lipid metabolism, bile acid metabolism, and protein absorption were found to be enriched in individuals with PCOS. The gut microbiome in PCOS is not characterized by lower diversity, but the composition is altered at the phylum, family, genus, or species level. Consequently, the metabolic pathway differs according to the phenotype of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Persson S, Elenis E, Turkmen S, Kramer MS, Yong EL, Sundström-Poromaa I. Fecundity among women with polycystic ovary syndrome (PCOS)-a population-based study. Hum Reprod. 2019;34:2052–60.

    Article  CAS  PubMed  Google Scholar 

  2. Huddleston HG, Dokras A. Diagnosis and treatment of polycystic ovary syndrome. JAMA. 2022;327:274–5.

    Article  PubMed  Google Scholar 

  3. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370:685–97.

    Article  CAS  PubMed  Google Scholar 

  4. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 1989;38:1165–74.

    Article  CAS  PubMed  Google Scholar 

  5. Guo F, Gong Z, Fernando T, Zhang L, Zhu X, Shi Y. The lipid profiles in different characteristics of women with PCOS and the interaction between dyslipidemia and metabolic disorder states: a retrospective study in Chinese population. Front Endocrinol (Lausanne). 2022;13:892125.

    Article  PubMed  Google Scholar 

  6. Chiu WL, Boyle J, Vincent A, Teede H, Moran LJ. Cardiometabolic risks in polycystic ovary syndrome: non-traditional risk factors and the impact of obesity. Neuroendocrinology. 2017;104:412–24.

    Article  CAS  PubMed  Google Scholar 

  7. Behboudi-Gandevani S, Amiri M, Bidhendi Yarandi R, Noroozzadeh M, Farahmand M, Rostami Dovom M, Ramezani Tehrani F. The risk of metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Clin Endocrinol. 2018;88:169–84.

    Article  Google Scholar 

  8. Kolhe JV, Chhipa AS, Butani S, Chavda V, Patel SS. PCOS and depression: common links and potential targets. Reprod Sci. 2022;29:3106–23.

    Article  CAS  PubMed  Google Scholar 

  9. Shabir I, Ganie MA, Zargar MA, Bhat D, Mir MM, Jan A, Shah ZA, Jan V, Rasool R, Naqati A. Prevalence of metabolic syndrome in the family members of women with polycystic ovary syndrome from North India. Indian J Endocrinol Metab. 2014;18:364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7:219–31.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Liu Y, Liu X, Xu L, Zhou L, Tang L, Zhuang J, Guo W, Hu R. High intake of energy and fat in Southwest Chinese women with PCOS: a population-based case-control study. PLoS ONE. 2015;10:e0127094.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350:663–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015;15:1211–9.

    Article  PubMed  Google Scholar 

  14. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Doré J, Mattila I, Plichta DR, Pöhö P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jørgensen T, Holm JB, Trošt K, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  16. Loftfield E, Herzig KH, Caporaso JG, Derkach A, Wan Y, Byrd DA, Vogtmann E, Männikkö M, Karhunen V, Knight R, Gunter MJ, Järvelin MR, Sinha R. Association of body mass index with fecal microbial diversity and metabolites in the Northern Finland birth cohort. Cancer Epidemiol Biomarkers Prev. 2020;29:2289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gangarapu V, Yıldız K, Ince AT, Baysal B. Role of gut microbiota: obesity and NAFLD. Turk J Gastroenterol. 2014;25:133–40.

    Article  PubMed  Google Scholar 

  19. Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, Wang L, Zhang Y, Liang X, Wang L, Gonzalez FJ, Patterson AD, Liu H, Mu L, Zhou Z, Zhao Y, Li R, Liu P, Zhong C, Pang Y, Jiang C, Qiao J. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25:1225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang YL, Zhou WW, Wu S, Tang WL, Wang ZW, Zhou ZY, Li ZW, Huang QF, He Y, Zhou HW. Intestinal flora is a key factor in insulin resistance and contributes to the development of polycystic ovary syndrome. Endocrinology. 2021;162(10).

  21. Zeng B, Lai Z, Sun L, Zhang Z, Yang J, Li Z, Lin J, Zhang Z. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study. Res Microbiol. 2019;170:43–52.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Sun Z, Jiang S, Bai X, Ma C, Peng Q, Chen K, Chang H, Fang T, Zhang H. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. mSystems. 2019;4(2).

  23. Liang YJ, Ming Q, Liang JL, Zhang Y, Zhang H, Shen T. Gut microbiota dysbiosis in polycystic ovary syndrome: association with obesity - a preliminary report. Can J Physiol Pharmacol. 2020;98:803–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou L, Ni Z, Cheng W, Yu J, Sun S, Zhai D, Yu C, Cai Z. Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr Connect. 2020;9:63–73.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou L, Ni Z, Yu J, Cheng W, Cai Z, Yu C. Correlation between fecal metabolomics and gut microbiota in obesity and polycystic ovary syndrome. Front Endocrinol (Lausanne). 2020;11:628.

    Article  PubMed  Google Scholar 

  26. Chen F, Chen Z, Chen M, Chen G, Huang Q, Yang X, Yin H, Chen L, Zhang W, Lin H, Ou M, Wang L, Chen Y, Lin C, Xu W, Yin G. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. NPJ Biofilms Microbiomes. 2021;7:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He F, Li Y. The gut microbial composition in polycystic ovary syndrome with insulin resistance: findings from a normal-weight population. J Ovarian Res. 2021;14:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mammadova G, Ozkul C, Yilmaz Isikhan S, Acikgoz A, Yildiz BO. Characterization of gut microbiota in polycystic ovary syndrome: findings from a lean population. Eur J Clin Invest. 2021;51(4): e13417.

  29. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, Horvath A, Pieber TR, Gorkiewicz G, Stadlbauer V, Obermayer-Pietsch B. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS ONE. 2017;12:e0168390.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bartolomaeus TUP, Birkner T, Bartolomaeus H, Löber U, Avery EG, Mähler A, Weber D, Kochlik B, Balogh A, Wilck N, Boschmann M, Müller DN, Markó L, Forslund SK. Quantifying technical confounders in microbiome studies. Cardiovasc Res. 2021;117:863–75.

    Article  CAS  PubMed  Google Scholar 

  31. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JP. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mcgrath S, Zhao X, Steele R, Thombs BD, Benedetti A. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. Stat Methods Med Res. 2020;29:2520–37.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. Bmj. 2011;342:d549.

    Article  PubMed  Google Scholar 

  36. Liu R, Zhang CH, Shi Y, Zhang F, Li LX, Wang XJ, Ling YX, Fu HQ, Dong WP, Shen J, Reeves A, Greenberg AS, Zhao LP, Peng YD, Ding XY. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol. 2017;8:324.

  37. Insenser M, Murri M, Del Campo R, Martínez-García M, Fernández-Durán E, Escobar-Morreale HF. Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab. 2018;103:2552–62.

    Article  PubMed  Google Scholar 

  38. Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, Thackray VG. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. 2018;103:1502–11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chu W, Han Q, Xu J, Wang J, Sun Y, Li W, Chen ZJ, Du Y. Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome. Fertil Steril. 2020;113:1286-1298.e1284.

    Article  CAS  PubMed  Google Scholar 

  40. Eyupoglu ND, Ergunay K, Acikgoz A, Akyon Y, Yilmaz E, Yildiz BO. Gut microbiota and oral contraceptive use in overweight and obese patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2020;105(12).

  41. Zhang N, Li C, Guo Y, Wu HC. Study on the intervention effect of Qi Gong Wan prescription on patients with phlegm-dampness syndrome of polycystic ovary syndrome based on intestinal flora. Evid Based Complement Alternat Med. 2020;2020:6389034.

    PubMed  PubMed Central  Google Scholar 

  42. Dong S, Jiao J, Jia S, Li G, Zhang W, Yang K, Wang Z, Liu C, Li D, Wang X. 16S rDNA full-length assembly sequencing technology analysis of intestinal microbiome in polycystic ovary syndrome. Front Cell Infect Microbiol. 2021;11:634981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liang Z, Di N, Li L, Yang D. Gut microbiota alterations reveal potential gut-brain axis changes in polycystic ovary syndrome. J Endocrinol Invest. 2021;44:1727–37.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu X, Li Y, Jiang Y, Zhang J, Duan R, Liu L, Liu C, Xu X, Yu L, Wang Q, Xiong F, Ni C, Xu L, He Q. Prediction of gut microbial community structure and function in polycystic ovary syndrome with high low-density lipoprotein cholesterol. Front Cell Infect Microbiol. 2021;11:665406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hassan S, Kaakinen MA, Draisma H, Zudina L, Ganie MA, Rashid A, Balkhiyarova Z, Kiran GS, Vogazianos P, Shammas C, Selvin J, Antoniades A, Demirkan A, Prokopenko I. Bifidobacterium is enriched in gut microbiome of Kashmiri women with polycystic ovary syndrome. Genes (Basel). 2022;13(2).

  46. Li G, Liu Z, Ren F, Shi H, Zhao Q, Song Y, Fan X, Ma X, Qin G. Alterations of gut microbiome and fecal fatty acids in patients with polycystic ovary syndrome in Central China. Front Microbiol. 2022;13:911992.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang Z, Fu H, Su H, Cai X, Wang Y, Hong Y, Hu J, Xie Z, Wang X. Multi-omics analyses reveal the specific changes in gut metagenome and serum metabolome of patients with polycystic ovary syndrome. Front Microbiol. 2022;13:1017147.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, Knight R, Ley RE. Conducting a microbiome study. Cell. 2014;158:250–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goralski KB, Abdulla D, Sinal CJ, Arsenault A, Renton KW. Toll-like receptor-4 regulation of hepatic Cyp3a11 metabolism in a mouse model of LPS-induced CNS inflammation. Am J Physiol Gastrointest Liver Physiol. 2005;289:G434–43.

    Article  CAS  PubMed  Google Scholar 

  50. Gandhi A, Guo T, Shah P, Moorthy B, Chow D-L, Hu M, Ghose R. CYP3A-dependent drug metabolism is reduced in bacterial inflammation in mice. Br J Pharmacol. 2012;166:2176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schiffer L, Arlt W, Storbeck K-H. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol. 2018;465:4–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindberg AA, Weintraub A, Zähringer U, Rietschel ET. Structure-activity relationships in lipopolysaccharides of Bacteroides fragilis. Rev Infect Dis. 1990;12(Suppl 2):S133-141.

    Article  CAS  PubMed  Google Scholar 

  53. Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS, Alexeev DG, Taraskina AY, Nasyrova RF, Krupitsky EM, Shalikiani NV, Bakulin IG, Shcherbakov PL, Skorodumova LO, Larin AK, Kostryukova ES, Abdulkhakov RA, Abdulkhakov SR, Malanin SY, Ismagilova RK, Grigoryeva TV, Ilina EN, Govorun VM. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome. 2017;5:141.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10:18–26.

    Article  CAS  PubMed  Google Scholar 

  55. Sicard JF, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017;9:103.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–6.

    Article  CAS  PubMed  Google Scholar 

  58. Mukherjee AG, Wanjari UR, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Dey A, Babu A, Renu K, Vellingiri B, Ramanathan G, Priya Doss CG, Elsherbiny N, Elsherbini AM, Alsamman AM, Zayed H, Gopalakrishnan AV. The implication of mechanistic approaches and the role of the microbiome in polycystic ovary syndrome (PCOS): a review. Metabolites. 2023;13(1).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Zhang.

Ethics declarations

Ethics Approval

The present study received approval from the Institutional Review Board of the Fourth Affiliated Hospital of Hebei Medical University.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhang, N. Gut Microbiome Composition in Polycystic Ovary Syndrome Adult Women: A Systematic Review and Meta-analysis of Observational Studies. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-023-01440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-023-01440-4

Keywords

Navigation