Skip to main content
Log in

Lactiplantibacillus plantarum Regulated Intestinal Microbial Community and Cytokines to Inhibit Salmonella typhimurium Infection

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are recognized as food-grade safe microorganisms and have many beneficial effects. LAB could maintain the host intestinal homeostasis and regulate intestinal microbial community to exert antibacterial effects. In this study, Lactiplantibacillus plantarum (L. plantarum, Lp01) strain isolated from pig intestine was orally administered to C57BL/6 mice, and mice were then infected with Salmonella typhimurium (ATCC14028). The protective effects of L. plantarum were evaluated by monitoring body weight loss, survival rates, bacterial loads in tissue, colon histopathology analysis, and cytokine secretion. 16S rRNA gene sequencing was also utilized to detect the dynamics of the blind gut microbial community in mice. We found that L. plantarum could significantly reduce the body weight loss and improve the survival rates. The survival rate in the L. P-Sty group was up to 67.5%, which was much higher than that in the STY group (25%). Counting of bacterial loads displayed that the colony-forming unit (CFU) of S. typhimurium in the spleen (p < 0.05) and the liver (p < 0.05) from L. P-Sty group both decreased, compared with STY group. Intestinal histopathology showed that it alleviated the intestinal injury caused by Salmonella, inhibited the secretion of pro-inflammatory cytokines, and promoted anti-inflammatory cytokines (p < 0. 01). In addition, L. plantarum also significantly ameliorated the intestinal gut microbiome disturbance caused by Salmonella. It displayed an obvious increase of beneficial bacteria including Lactobacillus and Bacteroidetes and reduction of pathogenic bacteria like Proteobacteria. In conclusion, L. plantarum could regulate microbial community to inhibit Salmonella typhimurium infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh RK, Chang HW, Yan D et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15(1):73. https://doi.org/10.1186/s12967-017-1175-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science (New York, N.Y.) 336(6086):1262–1267. https://doi.org/10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  3. Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26(6):326–333. https://doi.org/10.1016/j.it.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen T, Jin YY, Chung HJ et al (2017) Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases. Molecules (Basel, Switzerland) 22(10):1795. https://doi.org/10.3390/molecules22101795

    Article  CAS  PubMed  Google Scholar 

  5. Quan J, Cai G, Yang M et al (2019) Exploring the fecal microbial composition and metagenomic functional capacities associated with feed efficiency in commercial DLY pigs. Front Microbiol 10:52. https://doi.org/10.3389/fmicb.2019.00052

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shah T, Baloch Z, Shah Z et al (2021) The intestinal microbiota: impacts of antibiotics therapy, colonization resistance, and diseases. Int J Mol Sci 22(12):6597. https://doi.org/10.3390/ijms22126597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang GY, Zhu YH, Zhang W et al (2016) Influence of orally fed a select mixture of Bacillus probiotics on intestinal T-cell migration in weaned MUC4 resistant pigs following Escherichia coli challenge. Vet Res 47(1):71. https://doi.org/10.1186/s13567-016-0355-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trevisi P, Latorre R, Priori D et al (2016) Effect of feed supplementation with live yeast on the intestinal transcriptome profile of weaning pigs orally challenged with Escherichia coli F4. Animal 47(1):71. https://doi.org/10.1017/S1751731116001178

    Article  CAS  Google Scholar 

  9. Yang KM, Jiang ZY, Zheng CT et al (2014) Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci 92(4):1496–1503. https://doi.org/10.2527/jas.2013-6619

    Article  CAS  PubMed  Google Scholar 

  10. Lashani E, Davoodabadi A, Soltan Dallal MM (2020) Some probiotic properties of Lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. Vet Res Forum 11(2):121–126. https://doi.org/10.30466/vrf.2018.90418.2188

  11. Kemgang TS, Kapila S, Shanmugam VP et al (2016) Fermented milk with probiotic Lactobacillus rhamnosus S1K3 (MTCC5957) protects mice from salmonella by enhancing immune and nonimmune protection mechanisms at intestinal mucosal level. J Nutr Biochem 30:62–73. https://doi.org/10.1016/j.jnutbio.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  12. Filannino P, De AM, Di CR et al (2018) How Lactobacillus plantarum shapes its transcriptome in response to contrasting habitats. Env Microbiol 20:3700–3716. https://doi.org/10.1111/1462-2920.14372

    Article  CAS  Google Scholar 

  13. Wang J, Ji H, Wang S et al (2018) Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol 9:1953. https://doi.org/10.3389/fmicb.2018.01953

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim AR, Ahn KB, Yun CH et al (2019) Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm. J Endod 45:310–315. https://doi.org/10.1016/j.joen.2018.12.007

    Article  PubMed  Google Scholar 

  15. Tran T, Everaert N, Bindelle J (2018) Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J Anim Physiol Anim Nutr 102(1):17–32. https://doi.org/10.1111/jpn.12666

    Article  CAS  Google Scholar 

  16. Lawley TD, Bouley DM, Hoy YE et al (2008) Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76(1):403–416. https://doi.org/10.1128/IAI.01189-07

    Article  CAS  PubMed  Google Scholar 

  17. Barman M, Unold D, Shifley K et al (2008) Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun 76(3):907–915. https://doi.org/10.1128/IAI.01432-07

    Article  CAS  PubMed  Google Scholar 

  18. Borewicz KA, Kim HB, Singer RS et al (2015) Changes in the porcine intestinal microbiome in response to infection with Salmonella enterica and Lawsonia intracellularis. PLoS ONE 10(10):e0139106. https://doi.org/10.1371/journal.pone.0139106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi SH, Yang WT, Huang KY et al (2016) β-glucans from coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages. Int J Biol Macromol 86:352–361. https://doi.org/10.1016/j.ijbiomac.2016.01.058

    Article  CAS  PubMed  Google Scholar 

  20. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bokulich NA, Dillon MR, Bolyen E et al (2018) q2-sample-classifier: machine-learning tools for microbiome classification and regression. J Open Res Softw 3(30):934. https://doi.org/10.21105/joss.00934

  22. Dougan G, John V, Palmer S et al (2011) Immunity to salmonellosis. Immunol Rev 240(1):196–210. https://doi.org/10.1111/j.1600-065X.2010.00999.x

    Article  CAS  PubMed  Google Scholar 

  23. Riddle MS, Porter CK (2012) Detection bias and the association between inflammatory bowel disease and Salmonella and Campylobacter infection. Gut 61(4):635. https://doi.org/10.1136/gutjnl-2011-300617

    Article  PubMed  Google Scholar 

  24. Gut AM, Vasiljevic T, Yeager T et al (2018) Salmonella infection - prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiology (Reading, England) 164(11):1327–1344. https://doi.org/10.1099/mic.0.000709

    Article  CAS  PubMed  Google Scholar 

  25. Su JH, Zhu YH, Ren TY et al (2018) Distribution and antimicrobial resistance of Salmonella isolated from pigs with diarrhea in China. Microorganisms 6(4):117. https://doi.org/10.3390/microorganisms6040117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allen SJ, Martinez EG, Gregorio GV et al (2010) Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 11:CD003048. https://doi.org/10.1002/14651858.CD003048.pub3

    Article  Google Scholar 

  27. Wen L, Duffy A (2017) Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr 147(7):1468S-1475S. https://doi.org/10.3945/jn.116.240754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen HL, Zhao XY, Zhao GX et al (2020) Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasit Vectors 13(1):56. https://doi.org/10.1186/s13071-020-3897-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuda T, Yokota Y, Haraguchi Y et al (2019) Susceptibility of gut indigenous lactic acid bacteria in BALB/c mice to oral administered Lactobacillus plantarum. Int J Food Sci Nutr 70(1):53–62. https://doi.org/10.1080/09637486.2018.1471590

    Article  CAS  PubMed  Google Scholar 

  30. Grassl GA, Valdez Y, Bergstrom KS et al (2008) Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis. Gastroenterology 134(3):768–780. https://doi.org/10.1053/j.gastro.2007.12.043

    Article  CAS  PubMed  Google Scholar 

  31. Yu Q, Liu X, Liu Y et al (2016) Defective small intestinal anion secretion, dipeptide absorption, and intestinal failure in suckling NBCe1-deficient mice. Pflugers Arch 468(8):1419–1432. https://doi.org/10.1007/s00424-016-1836-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu H, Ye L, Lu X et al (2018) Lactobacillus acidophilus alleviated Salmonella-induced goblet cells loss and colitis by Notch pathway. Mol Nutr Food Res 62(22):e1800552. https://doi.org/10.1002/mnfr.201800552

    Article  CAS  PubMed  Google Scholar 

  33. Kimura N, Mimura F, Nishida S et al (1976) Studies on the relationship between intestinal gut microbiome and cecal coccidiosis in chicken. Poult Sci 55(4):1375–1383. https://doi.org/10.3382/ps.0551375

    Article  CAS  PubMed  Google Scholar 

  34. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. https://doi.org/10.3389/fimmu.2014.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson CJ, Kendall MM (2017) Salmonella enterica serovar Typhimurium strategies for host adaptation. Front Microbiol 8:1983. https://doi.org/10.3389/fmicb.2017.01983

    Article  PubMed  PubMed Central  Google Scholar 

  36. Santos TT, Ornellas R, Acurcio LB et al (2021) Differential immune response of Lactobacillus plantarum 286 against Salmonella typhimurium infection in conventional and germ-free mice. Adv Exp Med Biol 1323:1–17. https://doi.org/10.1007/5584_2020_544

    Article  CAS  PubMed  Google Scholar 

  37. Santos RL (2014) Pathobiology of salmonella, intestinal microbiota, and the host innate immune response. Front Immunol 5:252. https://doi.org/10.3389/fimmu.2014.00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Monack DM (2012) Salmonella persistence and transmission strategies. Curr Opin Microbiol 15(1):100–107. https://doi.org/10.1016/j.mib.2011.10.013

    Article  PubMed  Google Scholar 

  39. Wolter M, Steimle A, Parrish A et al (2021) Dietary modulation alters susceptibility to Listeria monocytogenes and Salmonella typhimurium with or without a gut microbiota. mSystems 6(6):e0071721. https://doi.org/10.1128/mSystems.00717-21

    Article  PubMed  Google Scholar 

  40. Saad N, Delattre C, Urdaci M et al (2013) An overview of the last advances in probiotic and prebiotic field. LWT - Food Sci Technol 50(1)

  41. Kim YG, Sakamoto K, Seo SU et al (2017) Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science (New York, N.Y.) 356(6335):315–319. https://doi.org/10.1126/science.aag2029

    Article  CAS  PubMed  Google Scholar 

  42. Toscano M, De Grandi R, Stronati L et al (2017) Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: a preliminary study. World J Gastroenterol 23(15):2696–2704. https://doi.org/10.3748/wjg.v23.i15.2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hills RD Jr, Pontefract BA, Mishcon HR et al (2019) Gut microbiome: profound implications for diet and disease. Nutrients 11(7):1613. https://doi.org/10.3390/nu11071613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503. https://doi.org/10.1016/j.tibtech.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  45. Yue Y, He Z, Zhou Y et al (2020) Lactobacillus plantarum relieves diarrhea caused by enterotoxin-producing Escherichia coli through inflammation modulation and gut microbiota regulation. Food Funct 11(12):10362–10374. https://doi.org/10.1039/d0fo02670k

    Article  CAS  PubMed  Google Scholar 

  46. Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutrients 3(6):637–682. https://doi.org/10.3390/nu3060637

    Article  PubMed  PubMed Central  Google Scholar 

  47. Armstrong H, Bording-Jorgensen M, Dijk S et al (2018) The complex interplay between chronic inflammation, the microbiome, and cancer: understanding disease progression and what we can do to prevent it. Cancers 10(3):83. https://doi.org/10.3390/cancers10030083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Al Bander Z, Nitert MD, Mousa A et al (2020) The gut microbiota and inflammation: an overview. Int J Environ Res Public Health 17(20):7618. https://doi.org/10.3390/ijerph17207618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan Y, Zhou X, Guo K et al (2020) Chlorogenic acid protects against indomethacin-induced inflammation and mucosa damage by decreasing Bacteroides-derived LPS. Front Immunol 11:1125. https://doi.org/10.3389/fimmu.2020.01125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong N, Li X, Xue C et al (2019) Astragalus polysaccharides attenuated inflammation and balanced the gut microgut microbiome in mice challenged with Salmonella typhimurium. Int Immunopharmacol 74:105681. https://doi.org/10.1016/j.intimp.2019.105681

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Jilin Province Science and Technology Project (20200201109JC) and the National Natural Science Foundation of China (31302061).

Author information

Authors and Affiliations

Authors

Contributions

Jingtao Hu was corresponding authors to design the experiments. Rui-Han Liu and Ye Liao completed the experiments and wrote the paper. An-Qi Sun analyzed the data. All authors reviewed the results and approved the manuscript.

Corresponding author

Correspondence to Jing-Tao Hu.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, RH., Sun, AQ., Liao, Y. et al. Lactiplantibacillus plantarum Regulated Intestinal Microbial Community and Cytokines to Inhibit Salmonella typhimurium Infection. Probiotics & Antimicro. Prot. 15, 1355–1370 (2023). https://doi.org/10.1007/s12602-022-09987-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09987-5

Keywords

Navigation