Skip to main content
Log in

Effects of Lactic Acid Bacteria Isolated from Equine on Salmonella-Infected Gut Mouse Model

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the antibacterial potential of lactic acid bacteria (Weissella confuse, Pediococcus acidilactici, and Ligilactobacillus equi) isolated from healthy equine in Wuhan against Salmonella Typhimurium CVCC542-induced mice model on intestinal microflora. In previous studies, these isolated strains showed good probiotic potentials in vitro. In this study, fifty healthy mice were randomly divided into five groups, the blank control group, the control group, the Pediococcus acidilactici group (1 × 108 CFU/day), the Ligilactobacillus equi group (1 × 108 CFU/day), and the Weissella confuse group (1 × 108 CFU/day). The body weight in control group and Weissella confuse group showed significant decreased (P < 0.05, P < 0.01), while Pediococcus acidilactici group and Ligilactobacillus equi group showed good recovering after treatments. The lowest diarrhea rate was shown in Ligilactobacillus equi group after treatment. In histopathology, Ligilactobacillus equi group showed the least structural damage in duodenum, and all probiotic treatment groups showed less damage in cecum. The sequence data and optical transform unit showed that Pediococcus acidilactici group and Ligilactobacillus equi group had higher number than control group, while the diversity data showed that the control group and Weissella confuse group had lower diversity in cecum. Microbial community analysis showed increased abundance of Firmicutes, Bacteroidetes, uncultured_bacterium_f_Muribaculaceae, and Lactobacillus in treatment groups, while potential microbes that can induce intestinal diseases such as Verrucomicrobia, Akkermansia, and Lachnospiraceae_NK4A136_group decreased in the treatment groups. In conclusion, lactic acid bacteria isolated from the healthy horses could alleviate the infection of Salmonella and regulate intestinal flora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Data are available on reasonable request to the authors.

References

  1. Kirk MD, Pires SM, Black RE et al (2015) World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 12:e1001921. https://doi.org/10.1371/journal.pmed.1001921

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kasimoglu Dogru A, Ayaz ND, Gencay YE (2010) Serotype identification and antimicrobial resistance profiles of Salmonella spp. isolated from chicken carcasses. Trop Anim Health Prod 42:893–897. https://doi.org/10.1007/s11250-009-9504-7

    Article  PubMed  Google Scholar 

  3. Scallan E, Hoekstra RM, Mahon BE, Jones TF, Griffin PM (2015) An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol Infect 143:2795–2804. https://doi.org/10.1017/S0950268814003185

    Article  CAS  PubMed  Google Scholar 

  4. Majowicz SE, Musto J, Scallan E et al (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889. https://doi.org/10.1086/650733

    Article  PubMed  Google Scholar 

  5. Liu H, Whitehouse CA, Li B (2018) Presence and persistence of Salmonella in water: the impact on microbial quality of water and food safety. Front Public Health 6:159. https://doi.org/10.3389/fpubh.2018.00159

    Article  PubMed  PubMed Central  Google Scholar 

  6. He H, Genovese KJ, Swaggerty CL, Nisbet DJ, Kogut MH (2012) A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars. Foodborne Pathog Dis 9:1104–1110. https://doi.org/10.1089/fpd.2012.1233

    Article  CAS  PubMed  Google Scholar 

  7. Jackson BR, Griffin PM, Cole D, Walsh KA, Chai SJ (2013) Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerg Infect Dis 19:1239–1244. https://doi.org/10.3201/eid1908.121511

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ford L, Moffatt CRM, Fearnley E et al (2018) The epidemiology of Salmonella enterica outbreaks in Australia, 2001–2016. Frontiers in Sustainable Food Systems 2:86. https://doi.org/10.3389/fsufs.2018.00086

    Article  Google Scholar 

  9. Bouchrif B, Paglietti B, Murgia M, Piana A, Cohen N, Ennaji MM, Rubino S, Timinouni M (2009) Prevalence and antibiotic-resistance of Salmonella isolated from food in Morocco. J Infect Dev Ctries 3:35–40. https://doi.org/10.3855/jidc.103

    Article  PubMed  Google Scholar 

  10. Threlfall EJ, Ward LR, Frost JA, Willshaw GA (2000) The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol 62:1–5. https://doi.org/10.1016/S0168-1605(00)00351-2

    Article  CAS  PubMed  Google Scholar 

  11. Meakins S, Fisher IS, Berghold C et al (2008) Antimicrobial drug resistance in human nontyphoidal Salmonella isolates in Europe 2000–2004: a report from the enter-net international surveillance network. Microb Drug Resist 14:31–35. https://doi.org/10.1089/mdr.2008.0777

    Article  CAS  PubMed  Google Scholar 

  12. Kariuki S, Gordon MA, Feasey N, Parry CM (2015) Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33(Suppl 3):C21–C29. https://doi.org/10.1016/j.vaccine.2015.03.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antunes LC, Han J, Ferreira RB, Lolić P, Borchers CH, Finlay BB (2011) Effect of antibiotic treatment on the intestinal metabolome. Antimicrob Agents Chemother 55:1494–1503. https://doi.org/10.1128/AAC.01664-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, Osborn J, Falconieri P, Borrelli O, Cucchiara S (2006) Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55:1760–1767. https://doi.org/10.1136/gut.2005.078824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Invest 124:4212–4218. https://doi.org/10.1172/JCI72333

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:119–129. https://doi.org/10.1016/j.chom.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  17. Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, Lupp C, Finlay BB (2008) Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76:4726–4736. https://doi.org/10.1128/IAI.00319-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergogne-Bérézin E (2000) Treatment and prevention of antibiotic associated diarrhea. Int J Antimicrob Agents 16:521–526. https://doi.org/10.1016/s0924-8579(00)00293-4

    Article  PubMed  Google Scholar 

  19. Kaltenbach G, Heitz D (2004) Antibiotic-associated diarrhea in the elderly. Rev Med Interne 25:46–53. https://doi.org/10.1016/j.revmed.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  20. De Briyne N, Atkinson J, Pokludová L, Borriello SP (2014) Antibiotics used most commonly to treat animals in Europe. Vet Rec 175:325. https://doi.org/10.1136/vr.102462

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, Rehman MU, Li K et al (2016) Antimicrobial resistance of Escherichia coli isolated from Tibetan piglets suffering from white score diarrhea. Pak Vet J 37:43–46

    CAS  Google Scholar 

  22. Li A, Wang Y, Pei L, Mehmood K, Li K, Qamar H, Iqbal M, Waqas M, Liu J, Li J (2019) Influence of dietary supplementation with Bacillus velezensis on intestinal microbial diversity of mice. Microb Pathog 136:103671. https://doi.org/10.1016/j.micpath.2019.103671

    Article  CAS  PubMed  Google Scholar 

  23. Allen HK, Levine UY, Looft T, Bandrick M, Casey TA (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol 21:114–119. https://doi.org/10.1016/j.tim.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  24. Asahara T, Shimizu K, Takada T, Kado S, Yuki N, Morotomi M, Tanaka R, Nomoto K (2011) Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice. J Appl Microbiol 110:163–173. https://doi.org/10.1111/j.1365-2672.2010.04884.x

    Article  CAS  PubMed  Google Scholar 

  25. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, Libby SJ, Fang FC, Raffatellu M (2013) Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14:26–37. https://doi.org/10.1016/j.chom.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan S, Chousalkar KK (2020) Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens. J Anim Sci Biotechnol 11:29. https://doi.org/10.1186/s40104-020-0433-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naik AK, Pandey U, Mukherjee R, Mukhopadhyay S, Chakraborty S, Ghosh A, Aich P (2019) Lactobacillus rhamnosus GG reverses mortality of neonatal mice against Salmonella challenge. Toxicol Res (Camb) 8:361–372. https://doi.org/10.1039/c9tx00006b

    Article  CAS  PubMed  Google Scholar 

  28. Burkholder KM, Fletcher DH, Gileau L, Kandolo A (2019) Lactic acid bacteria decrease Salmonella enterica Javiana virulence and modulate host inflammation during infection of an intestinal epithelial cell line. Pathog Dis 77:ftz025. https://doi.org/10.1093/femspd/ftz025

  29. Pei L, Yang H, Qin S, Yan Z, Zhang H, Lan Y, Li A, Iqbal M, Shen Y (2021) Isolation and evaluation of probiotic potential of lactic acid strains from healthy equines for potential use in Salmonella infection. J Equine Vet Sci 96:103312. https://doi.org/10.1016/j.jevs.2020.103312

    Article  PubMed  Google Scholar 

  30. Bolick DT, Kolling GL, Moore JH 2nd et al (2014) Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli-induced diarrhea. Gut Microbes 5:618–627. https://doi.org/10.4161/19490976.2014.969642

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang JY, Lee SN, Chang SY, Ko HJ, Ryu S, Kweon MN (2014) A mouse model of shigellosis by intraperitoneal infection. J Infect Dis 209:203–215. https://doi.org/10.1093/infdis/jit399

    Article  CAS  PubMed  Google Scholar 

  32. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. https://doi.org/10.1126/science.1177486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 8:435–454. https://doi.org/10.1586/eri.10.14

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Endt K, Stecher B, Chaffron S et al (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6:e1001097. https://doi.org/10.1371/journal.ppat.1001097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li A, Wang Y, Li Z, Qamar H, Mehmood K, Zhang L, Liu J, Zhang H, Li J (2019) Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb Cell Fact 18:112. https://doi.org/10.1186/s12934-019-1161-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeng Y, Zeng D, Zhang Y, Ni X, Tang Y, Zhu H, Wang H, Yin Z, Pan K, Jing B (2015) Characterization of the cellulolytic bacteria communities along the gastrointestinal tract of Chinese Mongolian sheep by using PCR-DGGE and real-time PCR analysis. World J Microbiol Biotechnol 31:1103–1113. https://doi.org/10.1007/s11274-015-1860-z

    Article  PubMed  Google Scholar 

  38. Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, Ding J, Wang J, Wang H, Fan W, Zhao J, Meng H (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 10:e0117441. https://doi.org/10.1371/journal.pone.0117441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693. https://doi.org/10.1038/sj.embor.7400731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan W, Sun C, Yuan J, Yang N (2017) Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci Rep 7:45308. https://doi.org/10.1038/srep45308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. https://doi.org/10.1126/science.1155725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65. https://doi.org/10.3945/ajcn.110.010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223. https://doi.org/10.1016/j.chom.2008.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance–a mini-review. Gerontology 55:379–386. https://doi.org/10.1159/000212758

    Article  CAS  PubMed  Google Scholar 

  46. Manabe I (2011) Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ J 75:2739–2748. https://doi.org/10.1253/circj.cj-11-1184

    Article  CAS  PubMed  Google Scholar 

  47. Okwan-Duodu D, Umpierrez GE, Brawley OW, Diaz R (2013) Obesity-driven inflammation and cancer risk: role of myeloid derived suppressor cells and alternately activated macrophages. Am J Cancer Res 3:21–33

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin H, Zhang C (2020) High Fat High Calories Diet (HFD) increase gut susceptibility to carcinogens by altering the gut microbial community. J Cancer 11:4091–4098. https://doi.org/10.7150/jca.43561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hui H, Wu Y, Zheng T, Zhou S, Tan Z (2020) Bacterial characteristics in intestinal contents of antibiotic-associated diarrhea mice treated with qiweibaizhu powder. Med Sci Monit 26:e921771. https://doi.org/10.12659/MSM.921771

  50. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770. https://doi.org/10.1128/AEM.01477-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Campieri M, Gionchetti P (2001) Bacteria as the cause of ulcerative colitis. Gut 48:132–135. https://doi.org/10.1136/gut.48.1.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng J, Yuan X, Cheng G, Jiao S, Feng C, Zhao X, Yin H, Du Y, Liu H (2018) Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr Polym 190:77–86. https://doi.org/10.1016/j.carbpol.2018.02.058

    Article  CAS  PubMed  Google Scholar 

  53. Chassaing B, Gewirtz AT (2014) Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol 42:49–53. https://doi.org/10.1177/0192623313508481

    Article  PubMed  Google Scholar 

  54. Cui HX, Zhang LS, Luo Y, Yuan K, Huang ZY, Guo Y (2019) A purified anthraquinone-glycoside preparation from rhubarb ameliorates type 2 diabetes mellitus by modulating the gut microbiota and reducing inflammation. Front Microbiol 10:1423. https://doi.org/10.3389/fmicb.2019.01423

    Article  PubMed  PubMed Central  Google Scholar 

  55. Salzman NH, de Jong H, Paterson Y, Harmsen HJM, Welling GW, Bos NA (2002) Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology (Reading) 148:3651–3660. https://doi.org/10.1099/00221287-148-11-3651

    Article  CAS  PubMed  Google Scholar 

  56. Lagkouvardos I, Pukall R, Abt B et al (2016) The mouse intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 1:16131. https://doi.org/10.1038/nmicrobiol.2016.131

    Article  CAS  PubMed  Google Scholar 

  57. Seedorf H, Griffin NW, Ridaura VK et al (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159:253–266. https://doi.org/10.1016/j.cell.2014.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ormerod KL, Wood DL, Lachner N et al (2016) Genomic characterization of the uncultured Bacteroidales family S24–7 inhabiting the guts of homeothermic animals. Microbiome 4:36. https://doi.org/10.1186/s40168-016-0181-2

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lagkouvardos I, Lesker TR, Hitch TCA et al (2019) Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7:28. https://doi.org/10.1186/s40168-019-0637-2

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yıldız GG, Öztürk M, Aslım B (2011) Identification of Lactobacillus strains from breast-fed infant and investigation of their cholesterol-reducing effects. World J Microbiol Biotechnol 27:2397–2406. https://doi.org/10.1007/s11274-011-0710-x

    Article  Google Scholar 

  61. Walker WA (2000) Role of nutrients and bacterial colonization in the development of intestinal host defense. J Pediatr Gastroenterol Nutr 30(Suppl 2):S2–S7

    Article  PubMed  Google Scholar 

  62. Vesterlund S, Karp M, Salminen S, Ouwehand AC (2006) Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology (Reading) 152:1819–1826. https://doi.org/10.1099/mic.0.28522-0

    Article  CAS  PubMed  Google Scholar 

  63. Collado MC, Meriluoto J, Salminen S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45:454–460. https://doi.org/10.1111/j.1472-765X.2007.02212.x

    Article  CAS  PubMed  Google Scholar 

  64. Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73:444S-450S. https://doi.org/10.1093/ajcn/73.2.444s

    Article  CAS  PubMed  Google Scholar 

  65. Chen CY, Tsen HY, Lin CL, Yu B, Chen CS (2012) Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poult Sci 91:2139–2147. https://doi.org/10.3382/ps.2012-02237

    Article  CAS  PubMed  Google Scholar 

  66. Yan X, Feng B, Li P, Tang Z, Wang L (2016) Microflora disturbance during progression of glucose intolerance and effect of sitagliptin: an animal study. J Diabetes Res 2016:2093171. https://doi.org/10.1155/2016/2093171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Q, Yu H, Xiao X, Hu L, Xin F, Yu X (2018) Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ 6:e4446. https://doi.org/10.7717/peerj.4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Fundamental Research Funds for the Central Universities, China (2662017QD015).

Author information

Authors and Affiliations

Authors

Contributions

LL Pei and YQ Shen proposed and designed the research idea; JJ Liu and ZH Huang contributed sample collection and analysis tools; LL Pei wrote the manuscript; M Iqbal checked the manuscript; YQ Shen checked the manuscript and approved the work done in the study.

Corresponding author

Correspondence to Yaoqin Shen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, L., Liu, J., Huang, Z. et al. Effects of Lactic Acid Bacteria Isolated from Equine on Salmonella-Infected Gut Mouse Model. Probiotics & Antimicro. Prot. 15, 469–478 (2023). https://doi.org/10.1007/s12602-021-09841-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09841-0

Keywords

Navigation