Skip to main content

Advertisement

Log in

Probiotics Treatment of Leg Diseases in Broiler Chickens: a Review

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Normal development and growth of bones are critical for poultry. With the rapid growth experienced by broiler chickens, higher incidences of leg weakness and lameness are common problems in adolescent meat-type poultry that present huge economic and welfare issues. Leg disorders such as angular bone deformities and tibial dyschondroplasia have become common in broilers and are associated with poor growth, high mortality rates, increased carcass condemnation, and downgrading at slaughter. Probiotics have shown promise for a variety of health purposes, including preventing diarrhea, elevating carcass quality, and promoting growth of the poultry. In addition, recent studies have indicated that probiotics can maintain the homeostasis of the gut microbiota and improve the health of the gastrointestinal tract, which confers a potentially beneficial effect on bone health. This review mainly describes the occurrence of broiler leg disease and the role of probiotics in bone health through regulating the gut microbiota and improving intestinal function, thus providing a relevant theoretical basis for probiotics to hinder the development of skeletal disorders in broiler chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Julian RJ (2005) Production and growth related disorders and other metabolic diseases of poultry-a review. Vet J 169(3):350–369. https://doi.org/10.1016/j.tvjl.2004.04.015

    Article  CAS  PubMed  Google Scholar 

  2. Knowles TG, Kestin SC, Haslam SM, Brown SN, Green LE, Butterworth A, Pope SJ, Pfeiffer D, Nicol CJ (2008) Leg disorders in broiler chickens: prevalence, risk factors and prevention. PLoS One 3(2):e1545. https://doi.org/10.1371/journal.pone.0001545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kierończyk B, Rawski M, Józefiak D, Świątkiewicz S (2017) Infectious and non-infectious factors associated with leg disorders in poultry-a review. Ann Anim Sci 17:645–669. https://doi.org/10.1515/aoas-2016-0098

    Article  CAS  Google Scholar 

  4. Dinev I (2012) Leg weakness Pathology in broiler chickens. J Poult Sci 49(2):63–67. https://doi.org/10.2141/jpsa.011109

    Article  Google Scholar 

  5. Yan FF, Wang WC, Cheng HW (2018) Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens. J Funct Foods 49:501–509. https://doi.org/10.1016/j.jff.2018.09.017

    Article  CAS  Google Scholar 

  6. Guo S, Xv J, Li Y, Bi Y, Hou Y, Ding B (2020) Interactive effects of dietary vitamin K3 and Bacillus subtilis PB6 on the growth performance and tibia quality of broiler chickens with sex separate rearing. Animal 14:1–9. https://doi.org/10.1017/S1751731120000178

    Article  CAS  Google Scholar 

  7. Liu F, Kong A, Fu P, Cao QQ, Tao KS, Liu DY, Wang XB, Tong ZX, Rehman MU, Huang SC (2021) Lactobacillus rhamnosus JYLR-005 Prevents thiram-induced tibial dyschondroplasia by enhancing bone-related growth performance in chickens. Probiotics Antimicrob Proteins 13(1):19–31. https://doi.org/10.1007/s12602-020-09670-7

    Article  CAS  PubMed  Google Scholar 

  8. Oviedo-Rondon EO, Wineland MJ, Small J et al (2009) Effect of incubation temperatures and chick transportation conditions on bone development and leg health. J Appl Poultry Res 18(4):671–678. https://doi.org/10.1371/journal.pone.0001545

    Article  CAS  Google Scholar 

  9. Paz IA, Garcia R, Bernardi R et al (2010) Selecting appropriate bedding to reduce locomotion problems in broilers. Rev Bras Cienc Avic 12(3):189–195. https://doi.org/10.1590/S1516-635X2010000300008

    Article  Google Scholar 

  10. Huang SC, Cao QQ, Cao YB, Yang YR, Xu TT, Yue K, Liu F, Tong ZX, Wang XB (2020) Morinda officinalis polysaccharides improve meat quality by reducing oxidative damage in chickens suffering from tibial dyschondroplasia. Food Chem 344:128688. https://doi.org/10.1016/j.foodchem.2020.128688

    Article  CAS  PubMed  Google Scholar 

  11. Duggan BM, Hocking PM, Schwarz T, Clements DN (2015) Differences in hindlimb morphology of ducks and chickens: effects of domestication and selection. Genet Sel Evol 47:88. https://doi.org/10.1186/s12711-015-0166-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang SC, Zhang LH, Zhang JL, Rehman MU, Tong XL, Qiu G, Jiang X, Iqbal M, Shahzad M, Shen YQ, Li JK (2018) Role and regulation of growth plate vascularization during coupling with osteogenesis in tibial dyschondroplasia of chickens. Sci Rep 8(1):3680. https://doi.org/10.1038/s41598-018-22109-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Waldenstedt L (2006) Nutritional factors of importance for optimal leg health in broilers: a review. Anim Feed Sci Technol 126(3–4):291–307. https://doi.org/10.1007/BF02291456

    Article  Google Scholar 

  14. Tullo E, Fontana I, Peña Fernandez A, Vranken E, Norton T, Berckmans D, Guarino M (2017) Association between environmental predisposing risk factors and leg disorders in broiler chickens. J Anim Sci 95(4):1512–1520. https://doi.org/10.2527/jas.2016.1257

    Article  CAS  PubMed  Google Scholar 

  15. Wideman RF Jr, Al-Rubaye A, Kwon YM, Blankenship J, Lester H, Mitchell KN, Pevzner IY, Lohrmann T, Schleifer J (2015) Prophylactic administration of a combined prebiotic and probiotic, or therapeutic administration of enrofloxacin, to reduce the incidence of bacterial chondronecrosis with osteomyelitis in broilers. Poult Sci 94(1):25–36. https://doi.org/10.3382/ps/peu025

    Article  CAS  PubMed  Google Scholar 

  16. Wideman RF, Prisby RD (2013) Bone circulatory disturbances in the development of spontaneous bacterial chondronecrosis with osteomyelitis: a translational model for the pathogenesis of femoral head necrosis. Front Endocrinol (Lausanne) 3:183. https://doi.org/10.3389/fendo.2012.00183

    Article  Google Scholar 

  17. Tahamtani FM, Pedersen IJ, Riber AB (2020) Effects of environmental complexity on welfare indicators of fast-growing broiler chickens. Poult Sci 99(1):21–29. https://doi.org/10.3382/ps/pez510

    Article  CAS  PubMed  Google Scholar 

  18. Kouwenhoven B, Vertommen M, Eck J (1978) Runting and leg weakness in broilers: Involvement of infectious factors. Veterinary Science Communications 2(1):253–259. https://doi.org/10.1007/BF02291456

    Article  Google Scholar 

  19. Garner JP, Kiess AS, Mench JA, Newberry RC, Hester PY (2012) The effect of cage and house design on egg production and egg weight of White Leghorn hens: an epidemiological study. Poult Sci 91(7):1522–1535. https://doi.org/10.3382/ps.2011-01969

    Article  CAS  PubMed  Google Scholar 

  20. Ventura BA, Siewerdt F, Estevez I (2010) Effects of barrier perches and density on broiler leg health, fear, and performance. Poult Sci 89(8):1574–1583. https://doi.org/10.3382/ps.2009-00576

    Article  CAS  PubMed  Google Scholar 

  21. Hu JY, Cheng HW (2021) Warm perches: a novel approach for reducing cold stress effect on production, plasma hormones, and immunity in laying hens. Poult Sci 100(8):101294. https://doi.org/10.1016/j.psj.2021.101294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wideman RF Jr, Hamal KR, Stark JM, Blankenship J, Lester H, Mitchell KN, Lorenzoni G, Pevzner I (2012) A wire-flooring model for inducing lameness in broilers: evaluation of probiotics as a prophylactic treatment. Poult Sci 91(4):870–883. https://doi.org/10.3382/ps.2011-01907

    Article  PubMed  Google Scholar 

  23. McCabe LR, Irwin R, Schaefer L, Britton RA (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228(8):1793–1798. https://doi.org/10.2141/jpsa.011109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bielke LR, Hargis BM, Latorre JD (2017) Impact of enteric health and mucosal permeability on skeletal health and lameness in poultry. Adv Exp Med Biol 1033:185–197. https://doi.org/10.1007/978-3-319-66653-2-9

    Article  CAS  PubMed  Google Scholar 

  25. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857. https://doi.org/10.1126/science.aad8588

    Article  CAS  PubMed  Google Scholar 

  26. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277:50959–50965. https://doi.org/10.1136/bjo.85.2.234

    Article  CAS  PubMed  Google Scholar 

  27. Ohlsson C, Sjögren K (2015) Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26(2):69–74. https://doi.org/10.1016/j.tem.2014.11.004

  28. Hao ML, Wang GY, Zuo XQ, Qu CJ, Yao BC, Wang DL (2019) Gut microbiota: an overlooked factor that plays a significant role in osteoporosis. J Int Med Res 47(9):4095–4103. https://doi.org/10.1177/0300060519860027

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tong X, Rehman MU, Huang S, Jiang X, Zhang H, Li J (2018) Comparative analysis of gut microbial community in healthy and tibial dyschondroplasia affected chickens by high throughput sequencing. Microb Pathog 118:133–139. https://doi.org/10.1016/j.micpath.2018.03.001

    Article  PubMed  Google Scholar 

  30. Yan J, Charles JF (2018) Gut microbiota and IGF-1. Calcif Tissue Int 102(4):406–414. https://doi.org/10.1007/s00223-018-0395-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wideman RF (2016) Bacterial chondronecrosis with osteomyelitis and lameness in broilers: A review. Poult Sci 95(2):325–344. https://doi.org/10.3382/ps/pev320

    Article  CAS  PubMed  Google Scholar 

  32. Wang G, Huang S, Wang Y, Cai S, Yu H, Liu H, Zeng X, Zhang G, Qiao S (2019) Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci 76(20):3917–3937. https://doi.org/10.1007/s00018-019-03190-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blumberg R, Powrie F (2012) Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 4(137):137rv7. https://doi.org/10.1126/scitranslmed.3004184

  34. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249. https://doi.org/10.1038/nature11552

    Article  CAS  PubMed  Google Scholar 

  35. Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ, Pizano-Zárate ML, García-Mena J, Ramírez-Durán N (2017) Intestinal dysbiosis and rheumatoid arthritis: A link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res 2017:4835189. https://doi.org/10.1155/2017/4835189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tilg H, Zmora N, Adolph TE, Elinav E (2020) The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 20(1):40–54. https://doi.org/10.1038/s41577-019-0198-4

    Article  CAS  PubMed  Google Scholar 

  37. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 6(1):39–51. https://doi.org/10.1177/1756283X12459294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rao RK, Samak G (2013) Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 9(2):99–107. https://doi.org/10.2174/1573401311309020004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu Y, Wang B, Zeng Z, Liu R, Tang L, Gong L, Li W (2019) Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult Sci 98(10):5028–5039. https://doi.org/10.3382/ps/pez226

    Article  CAS  PubMed  Google Scholar 

  40. Xie S, Zhao S, Jiang L, Lu L, Yang Q, Yu Q (2019) Lactobacillus reuteri stimulates intestinal epithelial proliferation and induces differentiation into goblet cells in young chickens. J Agric Food Chem 67(49):13758–13766. https://doi.org/10.1021/acs.jafc.9b06256

    Article  CAS  PubMed  Google Scholar 

  41. Nii T, Kakuya H, Isobe N, Yoshimura Y (2020) Lactobacillus reuteri enhances the mucosal barrier function against heat-killed Salmonella typhimurium in the intestine of broiler chicks. J Poult Sci 57(2):148–159. https://doi.org/10.2141/jpsa.0190044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G (2018) Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol 8:314. https://doi.org/10.3389/fcimb.2018.00314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones SE, Versalovic J (2009) Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9:35. https://doi.org/10.1186/1471-2180-9-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mccabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13(6):363–371. https://doi.org/10.1007/s11914-015-0292-x

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goldstein EJ, Tyrrell K, Citron DM (2015) Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis 60(Suppl 2):S98–S107. https://doi.org/10.1093/cid/civ072

    Article  CAS  PubMed  Google Scholar 

  46. Deng Q, Shi H, Luo Y, Zhao H, Liu N (2020) Effect of dietary Lactobacilli mixture on Listeria monocytogenes infection and virulence property in broilers. Poult Sci 99(7):3655–3662. https://doi.org/10.1016/j.psj.2020.03.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yurong Y, Ruiping S, Shimin Z, Yibao J (2005) Effect of probiotics on intestinal mucosal immunity and ultrastructure of cecal tonsils of chickens. Arch Anim Nutr 59(4):237–246. https://doi.org/10.1080/17450390500216928

    Article  CAS  PubMed  Google Scholar 

  48. Humam AM, Loh TC, Foo HL, Samsudin AA, Mustapha NM, Zulkifli I, Izuddin WI (2019) Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals (Basel) 9(9):644. https://doi.org/10.3390/ani9090644

    Article  Google Scholar 

  49. Forte C, Manuali E, Abbate Y, Papa P, Vieceli L, Tentellini M, Trabalza-Marinucci M, Moscati L (2018) Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens. Poult Sci 97(3):930–936. https://doi.org/10.3382/ps/pex396

    Article  CAS  PubMed  Google Scholar 

  50. Soliman ES, Hamad RT, Abdallah MS (2021) Preventive antimicrobial action and tissue architecture ameliorations of Bacillus subtilis in challenged broilers. Vet World 14(2):523–536. https://doi.org/10.14202/vetworld.2021.523-536

  51. Dong Y, Li R, Liu Y, Ma L, Zha J, Qiao X, Chai T, Wu B (2020) Benefit of dietary supplementation with Bacillus subtilis BYS2 on growth performance, immune response, and disease resistance of broilers. Probiotics Antimicrob Proteins 12(4):1385–1397. https://doi.org/10.1007/s12602-020-09643-w

    Article  CAS  PubMed  Google Scholar 

  52. Fuccio L, Guido A (2013) Probiotics supplementation for the prevention of gastrointestinal radiation-induced side effects: the time is now. Am J Gastroenterol 108(2):277. https://doi.org/10.1038/ajg.2012.418

    Article  PubMed  Google Scholar 

  53. Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I (2015) Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One 10(7):e0134050. https://doi.org/10.1371/journal.pone.0134050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang F, Wang A, Zeng X, Hou C, Liu H, Qiao S (2015) Lactobacillus reuteri i5007 modulates tight junction protein expression in ipec-j2 cells with lps stimulation and in newborn piglets under normal conditions. BMC Microbiol 15:32. https://doi.org/10.1186/s12866-015-0372-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G (2019) Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab 74(2):115–124. https://doi.org/10.1159/000496426

    Article  CAS  PubMed  Google Scholar 

  56. Dicksved J, Schreiber O, Willing B, Petersson J, Rang S, Phillipson M, Holm L, Roos S (2012) Lactobacillus reuteri maintains a functional mucosal barrier during dss treatment despite mucus layer dysfunction. PLoS One 7(9):e46399. https://doi.org/10.1371/journal.pone.0046399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez-Lopez A, Behnsen J, Nuccio SP, Raffatellu M (2016) Mucosal immunity to pathogenic intestinal bacteria. Nat Rev Immunol 16(3):135–148. https://doi.org/10.1038/nri.2015.17

    Article  CAS  PubMed  Google Scholar 

  58. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16(10):605–616. https://doi.org/10.1038/s41575-019-0173-3

    Article  PubMed  Google Scholar 

  59. Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148(Pt 4):973–984. https://doi.org/10.1099/00221287-148-4-973

  60. Sato K, Takahashi K, Tohno M, Miura Y, Kamada T, Ikegami S, Kitazawa H (2009) Immunomodulation in gut-associated lymphoid tissue of neonatal chicks by immunobiotic diets. Poult Sci 88(12):2532–2538. https://doi.org/10.3382/ps.2009-00291

    Article  CAS  PubMed  Google Scholar 

  61. Yan FF, Wang WC, Cheng HW (2020) Bacillus subtilis-based probiotic promotes bone growth by inhibition of inflammation in broilers subjected to cyclic heating episodes. Poult Sci 99(11):5252–5260. https://doi.org/10.1016/j.psj.2020.08.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chopin F, Biver E, Funck-Brentano T, Bouvard B, Coiffier G, Garnero P, Thomas T (2012) Prognostic interest of bone turnover markers in the management of postmenopausal osteoporosis. Joint Bone Spine 79(1):26–31. https://doi.org/10.1016/j.jbspin.2011.05.004

    Article  PubMed  Google Scholar 

  63. Migliorini F, Maffulli N, Spiezia F, Peretti GM, Tingart M, Giorgino R (2021) Potential of biomarkers during pharmacological therapy setting for postmenopausal osteoporosis: a systematic review. J Orthop Surg Res 16(1):351. https://doi.org/10.1186/s13018-021-02497-0

    Article  PubMed  PubMed Central  Google Scholar 

  64. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E (2021) Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 39(1):19–26. https://doi.org/10.1007/s00774-020-01162-6

    Article  CAS  PubMed  Google Scholar 

  65. Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP (2013) Influence of osteoprotegerin on differentiation, activation, and apoptosis of gaoyou duck embryo osteoclasts in vitro. Poult Sci 92(6):1613–1620. https://doi.org/10.3382/ps.2012-02756

    Article  CAS  PubMed  Google Scholar 

  66. Tong X, Zhang C, Wang D, Song R, Ma Y, Cao Y, Zhao H, Bian J, Gu J, Liu Z (2020) Suppression of amp-activated protein kinase reverses osteoprotegerin-induced inhibition of osteoclast differentiation by reducing autophagy. Cell Prolif 53(1):e12714. https://doi.org/10.1111/cpr.12714

    Article  PubMed  Google Scholar 

  67. Li J, Zhang H, Yang C, Li Y, Dai Z (2016) An overview of osteocalcin progress. J Bone Miner Metab 34(4):367–379. https://doi.org/10.1007/s00774-015-0734-7

    Article  CAS  PubMed  Google Scholar 

  68. Iwamoto J (2014) Vitamin K2 therapy for postmenopausal osteoporosis. Nutrients 6(5):1971–1980. https://doi.org/10.3390/nu6051971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pulungan A, Soesanti F, Tridjaja B, Batubara J (2021) Vitamin D insufficiency and its contributing factors in primary school-aged children in Indonesia, a sun-rich country. Ann Pediatr Endocrinol Metab 26(2):92–98. https://doi.org/10.6065/apem.2040132.066

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, Movérare-Skrtic S, Islander U, Sjögren K (2014) Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 9(3):e92368. https://doi.org/10.1371/journal.pone.0092368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeom J, Ma S, Lim YH (2021) Probiotic Propionibacterium freudenreichii MJ2 enhances osteoblast differentiation and mineralization by increasing the OPG/RANKL ratio. Microorganisms 9(4):673. https://doi.org/10.3390/microorganisms9040673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanabrocki EL, Hermida RC, Wright M, Young RM, Bremner FW, Third JL, Ryan MD, Ayala DE, Johnson M, Nemchausky BA, Shirazi P, Scheving LE, Olwin JH (2001) Circadian variation of serum leptin in healthy and diabetic men. Chronobiol Int 18(2):273–283. https://doi.org/10.1081/CBI-100103191

    Article  CAS  PubMed  Google Scholar 

  73. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, Ahmad Z, Ibrahim Z, Jamaluddin R (2015) Probiotics (Bifidobacterium longum) increase bone mass density and upregulate sparc and bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int 2015:897639. https://doi.org/10.1155/2015/897639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR (2014) Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229(11):1822–1830. https://doi.org/10.1002/jcp.24636

  75. Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL (2010) Effect of blockade of TNF-α and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22(5):724–729. https://doi.org/10.1359/jbmr.070207

    Article  Google Scholar 

  76. Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, McCabe LR, Parameswaran N (2019) Beneficial effects of lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep 9(1):14708. https://doi.org/10.1038/s41598-019-51293-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saier MH, Mansour NM (2006) Probiotics and prebiotics in human health. J Mol Microb Biotech 10(1):22–25. https://doi.org/10.1016/B978-0-12-374938-3.00006-2

    Article  Google Scholar 

  78. Panda AK, Rao S, Raju M, Sharma SR (2006) Dietary supplementation of lactobacillus sporogenes on performance and serum biochemico-lipid profile of broiler chickens. J Poult Sci 43(3):235–240. https://doi.org/10.2141/jpsa.43.235

  79. Kőrösi Molnár A, Podmaniczky B, Kürti P, Glávits R, Virág G, Szabó Z, Farkas Z (2011) Effect of different concentrations of bacillus subtilis on immune response of broiler chickens. Probiotics Antimicrob Proteins 3(1):8–14. https://doi.org/10.1007/s12602-011-9063-x

    Article  PubMed  Google Scholar 

  80. Zou X, Jiang S, Zhang M, Hu H, Wu X, Liu J, Jin M, Cheng H (2021) Effects of bacillus subtilis on production performance, bone physiological property, and hematology indexes in laying hens. Animals 11(7):2041. https://doi.org/10.3390/ani11072041

    Article  PubMed  PubMed Central  Google Scholar 

  81. Abdulwahab AA, Horniaková E (2010) Some parameters of meat and bone chemical content of broilers fed diets containing lactobacillus species based on dried yogurt. Acta Univ Agric Silvic Mendelianae Brun 58(2):13–18. https://doi.org/10.11118/actaun201058020013

  82. Ciurescu G, Dumitru M, Gheorghe A, Untea AE, Drăghici R (2020) Effect of Bacillus subtilis on growth performance, bone mineralization, and bacterial population of broilers fed with different protein sources. Poult Sci 99(11):5960–5971. https://doi.org/10.1016/j.psj.2020.08.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fleming RH (2008) Nutritional factors affecting poultry bone health. Proc Nutr Soc 67(2):177–183. https://doi.org/10.1017/S0029665108007015

    Article  PubMed  Google Scholar 

  84. Koçer B, Bozkurt M, Ege G, Tüzün AE, Konak R, Olgun O (2018) Effects of a meal feeding regimen and the availability of fresh alfalfa on growth performance and meat and bone quality of broiler genotypes. Brit Poultry Sci 59(3):318–329. https://doi.org/10.1080/00071668.2018.1440378

    Article  Google Scholar 

  85. Amdekar S, Kumar A, Sharma P, Singh R, Singh V (2012) Lactobacillus protected bone damage and maintained the antioxidant status of liver and kidney homogenates in female wistar rats. Mol Cell Biochem 368(1–2):155–165. https://doi.org/10.1007/s11010-012-1354-3

    Article  CAS  PubMed  Google Scholar 

  86. Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62(4):851–858. https://doi.org/10.1079/PNS2003301

    Article  CAS  PubMed  Google Scholar 

  87. Bonjour JP (2011) Calcium and phosphate: a duet of ions playing for bone health. J Am Coll Nutr 30(5 Suppl 1):438S-448S. https://doi.org/10.1080/07315724.2011.10719988

    Article  CAS  PubMed  Google Scholar 

  88. Köhler OM, Grünberg W, Schnepel N, Muscher-Banse AS, Rajaeerad A, Hummel J, Breves G, Wilkens MR (2021) Dietary phosphorus restriction affects bone metabolism, vitamin D metabolism and rumen fermentation traits in sheep. J Anim Physiol Anim Nutr (Berl) 105(1):35–50. https://doi.org/10.1111/jpn.13449

    Article  CAS  Google Scholar 

  89. Lan GQ, Abdullah N, Jalaludin S, Ho YW (2002) Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult Sci 81(10):1522–1532. https://doi.org/10.1093/ps/81.10.1522

    Article  CAS  PubMed  Google Scholar 

  90. Weaver CM (2015) Diet, gut microbiome, and bone health. Curr Osteoporos 13(2):125–130. https://doi.org/10.1007/s11914-015-0257-0

    Article  Google Scholar 

  91. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yonezawa T, Kobayashi Y, Obara Y (2007) Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via gpr43 in the mcf-7 human breast cancer cell line. Cell Signal 19(1):185–193. https://doi.org/10.1016/j.cellsig.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  93. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135(5):825–837. https://doi.org/10.1016/j.cell.2008.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Villa CR, Ward WE, Comelli EM (2015) Gut microbiota-bone axis. Crit Rev Food Sci 57(8):1664–1672. https://doi.org/10.1080/10408398.2015.1010034

    Article  Google Scholar 

  95. Panwar H, Calderwood D, Gillespie AL et al (2016) Identification of lactic acid bacteria strains modulating incretin hormone secretion and gene expression in enteroendocrine cells. J Funct Foods 23:348–358. https://doi.org/10.1016/j.jff.2016.02.040

    Article  CAS  Google Scholar 

  96. Hansen MSS, Tencerova M, Frølich J, Kassem M, Frost M (2018) Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on bone cell metabolism. Basic Clin Pharmacol 122(1):25–37. https://doi.org/10.1111/bcpt.12850

    Article  CAS  Google Scholar 

  97. Bergmann NC, Lund A, Gasbjerg LS, Jørgensen NR, Jessen L, Hartmann B, Holst JJ, Christensen MB, Vilsbøll T, Knop FK (2019) Separate and combined effects of GLP and GLP-1 infusions on bone metabolism in overweight men without diabetes. J Clin Endocr Metab 104(7):2953–2960. https://doi.org/10.1210/jc.2019-00008

    Article  PubMed  Google Scholar 

  98. Mabilleau G (2015) Incretins and bone: friend or foe? Curr Opin Pharmacol 22:72–78. https://doi.org/10.1016/j.coph.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  99. Seino Y, Fukushima M, Yabe D (2010) GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig 1(1–2):8–23. https://doi.org/10.1111/j.2040-1124.2010.0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the China Postdoctoral Science Foundation (No. 2020M672234), the Outstanding Talents of Henan Agricultural University (No. 30500421), and the Key Scientific Research Project of Henan Higher Education Institutions of China (No. 21A230013).

Author information

Authors and Affiliations

Authors

Contributions

T.T.X. and K.Y. performed the literature review and drafted the manuscript. S.C.H. and X.S.T. contributed to the revision and editing of the manuscript. C.D.Z., L.X.L., and Q.Q.C. collected the literature and reviewed the text. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Shucheng Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Yue, K., Zhang, C. et al. Probiotics Treatment of Leg Diseases in Broiler Chickens: a Review. Probiotics & Antimicro. Prot. 14, 415–425 (2022). https://doi.org/10.1007/s12602-021-09869-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09869-2

Keywords

Navigation