Skip to main content

Advertisement

Log in

An overview of osteocalcin progress

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

An increasing amount of data indicate that osteocalcin is an endocrine hormone which regulates energy metabolism, male fertility and brain development. However, the detailed functions and mechanism of osteocalcin are not well understood and conflicting results have been obtained from researchers worldwide. In the present review, we summarize the progress of osteocalcin studies over the past 40 years, focusing on the structure of carboxylated and undercarboxylated osteocalcin, new functions and putative receptors, the role of osteocalcin in bone remodeling, specific expression and regulation in osteoblasts, and new indices for clinical studies. The complexity of osteocalcin in completely, uncompletely and non-carboxylated forms may account for the discrepancies in its tertiary structure and clinical results. Moreover, the extensive expression of osteocalcin and its putative receptor GPRC6A imply that there are new physiological functions and mechanisms of action of osteocalcin to be explored. New discoveries related to osteocalcin function will assist its potential clinical application and physiological theory, but comprehensive investigations are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci USA 72:3925–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047

    CAS  PubMed  Google Scholar 

  4. Hauschka PV, Carr SA (1982) Calcium-dependent alpha-helical structure in osteocalcin. Biochemistry 21:2538–2547

    Article  CAS  PubMed  Google Scholar 

  5. Kruse K, Kracht U (1986) Evaluation of serum osteocalcin as an index of altered bone metabolism. Eur J Pediatr 145:27–33

    Article  CAS  PubMed  Google Scholar 

  6. Minisola S, Romagnoli E (1996) Undercarboxylated osteocalcin (ucOC) level should be considered a marker of the risk of hip fracture. Bone 19:565

    Article  CAS  PubMed  Google Scholar 

  7. Szulc P, Chapuy MC, Meunier PJ, Delmas PD (1996) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone 18:487–488

    Article  CAS  PubMed  Google Scholar 

  8. Seibel MJ, Robins SP, Bilezikian JP (1997) Serum undercarboxylated osteocalcin and the risk of hip fracture. J Clin Endocrinol Metab 82:717–718

    Article  CAS  PubMed  Google Scholar 

  9. Ducy P, Desbois C, Boyce B et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  CAS  PubMed  Google Scholar 

  10. Katsnelson A (2010) Physiology: the bones of contention. Nature 466:914–915

    Article  CAS  PubMed  Google Scholar 

  11. Oury F, Khrimian L, Denny CA et al (2013) Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 155:228–241

    Article  CAS  PubMed  Google Scholar 

  12. Oury F, Sumara G, Sumara O et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karsenty G, Oury F (2014) Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol 382:521–526

    Article  CAS  PubMed  Google Scholar 

  17. Yamashita T, Okano K, Tsuruta Y, Akiba T, Nitta K (2013) Serum osteocalcin levels are useful as a predictor of cardiovascular events in maintenance hemodialysis patients. Int Urol Nephrol 45:207–214

    Article  CAS  PubMed  Google Scholar 

  18. Sheng L, Cao W, Cha B, Chen Z, Wang F, Liu J (2013) Serum osteocalcin level and its association with carotid atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas–bone–testis axis. J Clin Invest 123:2421–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alfadda AA, Masood A, Shaik SA, Dekhil H, Goran M (2013) Association between osteocalcin, metabolic syndrome, and cardiovascular risk factors: role of total and undercarboxylated osteocalcin in patients with type 2 diabetes. Int J Endocrinol 2013:197519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50:568–575

    Article  CAS  PubMed  Google Scholar 

  22. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foresta C, Strapazzon G, De Toni L, Gianesello L, Calcagno A, Pilon C, Plebani M, Vettor R (2010) Evidence for osteocalcin production by adipose tissue and its role in human metabolism. J Clin Endocrinol Metab 95:3502–3506

    Article  CAS  PubMed  Google Scholar 

  24. Gossl M, Modder UI, Atkinson EJ, Lerman A, Khosla S (2008) Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol 52:1314–1325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Benayahu D, Shamay A, Wientroub S (1997) Osteocalcin (BGP), gene expression, and protein production by marrow stromal adipocytes. Biochem Biophys Res Commun 231:442–446

    Article  CAS  PubMed  Google Scholar 

  26. Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135:929–937

    CAS  PubMed  Google Scholar 

  27. Fleet JC, Hock JM (1994) Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction. J Bone Miner Res 9:1565–1573

    Article  CAS  PubMed  Google Scholar 

  28. Lee AJ, Hodges S, Eastell R (2000) Measurement of osteocalcin. Ann Clin Biochem 37:432–446

    Article  PubMed  Google Scholar 

  29. Price PA, Nishimoto SK (1980) Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc Natl Acad Sci USA 77:2234–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Atkinson RA, Evans JS, Hauschka PV, Levine BA, Meats R, Triffitt JT, Virdi AS, Williams RJ (1995) Conformational studies of osteocalcin in solution. Eur J Biochem 232:515–521

    Article  CAS  PubMed  Google Scholar 

  31. Malashkevich VN, Almo SC, Dowd TL (2013) X-ray crystal structure of bovine 3 Glu-osteocalcin. Biochemistry 52:8387–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980

    Article  CAS  PubMed  Google Scholar 

  33. Lin K, Yang H, Gao Z, Li F, Yu S (2013) Overestimated accuracy of circular dichroism in determining protein secondary structure. Eur Biophys J 42:455–461

    Article  CAS  PubMed  Google Scholar 

  34. Nishimoto SK, Waite JH, Nishimoto M, Kriwacki RW (2003) Structure, activity, and distribution of fish osteocalcin. J Biol Chem 278:11843–11848

    Article  CAS  PubMed  Google Scholar 

  35. Isbell DT, Du S, Schroering AG, Colombo G, Shelling JG (1993) Metal ion binding to dog osteocalcin studied by 1H NMR spectroscopy. Biochemistry 32:11352–11362

    Article  CAS  PubMed  Google Scholar 

  36. Dowd TL, Rosen JF, Mints L, Gundberg CM (2001) The effect of Pb(2+) on the structure and hydroxyapatite binding properties of osteocalcin. Biochim Biophys Acta 1535:153–163

    Article  CAS  PubMed  Google Scholar 

  37. Cristiani A, Maset F, De Toni L, Guidolin D, Sabbadin D, Strapazzon G, Moro S, De Filippis V, Foresta C (2014) Carboxylation-dependent conformational changes of human osteocalcin. Front Biosci (Landmark Ed) 19:1105–1116

    Article  CAS  Google Scholar 

  38. Poser JW, Price PA (1979) A method for decarboxylation of gamma-carboxyglutamic acid in proteins. Properties of the decarboxylated gamma-carboxyglutamic acid protein from calf bone. J Biol Chem 254:431–436

    CAS  PubMed  Google Scholar 

  39. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13

    Article  PubMed  CAS  Google Scholar 

  40. Bodine PV, Komm BS (1999) Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone 25:535–543

    Article  CAS  PubMed  Google Scholar 

  41. Pi M, Faber P, Ekema G et al (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–40209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pi M, Parrill AL, Quarles LD (2010) GPRC6A mediates the non-genomic effects of steroids. J Biol Chem 285:39953–39964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pi M, Zhang L, Lei SF, Huang MZ, Zhu W, Zhang J, Shen H, Deng HW, Quarles LD (2010) Impaired osteoblast function in GPRC6A null mice. J Bone Miner Res 25:1092–1102

    CAS  PubMed  Google Scholar 

  44. Pi M, Wu Y, Quarles LD (2011) GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res 26:1680–1683

    Article  CAS  PubMed  Google Scholar 

  45. Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, Takeuchi H, Hirata M (2015) Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal 27:532–544

    Article  CAS  PubMed  Google Scholar 

  46. Kim JM, Choi JS, Kim YH, Jin SH, Lim S, Jang HJ, Kim KT, Ryu SH, Suh PG (2013) An activator of the cAMP/PKA/CREB pathway promotes osteogenesis from human mesenchymal stem cells. J Cell Physiol 228:617–626

    Article  CAS  PubMed  Google Scholar 

  47. Pi M, Chen L, Huang MZ et al (2008) GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 3:e3858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Pi M, Wu Y, Lenchik NI, Gerling I, Quarles LD (2012) GPRC6A mediates the effects of l-arginine on insulin secretion in mouse pancreatic islets. Endocrinology 153:4608–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wellendorph P, Johansen LD, Jensen AA, Casanova E, Gassmann M, Deprez P, Clement-Lacroix P, Bettler B, Brauner-Osborne H (2009) No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J Mol Endocrinol 42:215–223

    Article  CAS  PubMed  Google Scholar 

  51. Smajilovic S, Clemmensen C, Johansen LD, Wellendorph P, Holst JJ, Thams PG, Ogo E, Brauner-Osborne H (2013) The L-alpha-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in l-arginine-induced insulin release. Amino Acids 44:383–390

    Article  CAS  PubMed  Google Scholar 

  52. Pi M, Quarles LD (2012) Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology 153:2062–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knepper-Nicolai B, Reinstorf A, Hofinger I, Flade K, Wenz R, Pompe W (2002) Influence of osteocalcin and collagen I on the mechanical and biological properties of Biocement D. Biomol Eng 19:227–231

    Article  CAS  PubMed  Google Scholar 

  55. Rammelt S, Neumann M, Hanisch U, Reinstorf A, Pompe W, Zwipp H, Biewener A (2005) Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J Biomed Mater Res A 73:284–294

    Article  PubMed  CAS  Google Scholar 

  56. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  CAS  PubMed  Google Scholar 

  57. Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB (2009) Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed Mater 2:348–354

    Article  CAS  PubMed  Google Scholar 

  58. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, Vashishth D (2012) Dilatational band formation in bone. Proc Natl Acad Sci USA 109:19178–19183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. DeFranco DJ, Glowacki J, Cox KA, Lian JB (1991) Normal bone particles are preferentially resorbed in the presence of osteocalcin-deficient bone particles in vivo. Calcif Tissue Int 49:43–50

    Article  CAS  PubMed  Google Scholar 

  60. Lian JB, Tassinari M, Glowacki J (1984) Resorption of implanted bone prepared from normal and warfarin-treated rats. J Clin Invest 73:1223–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishida M, Amano S (2004) Osteocalcin fragment in bone matrix enhances osteoclast maturation at a late stage of osteoclast differentiation. J Bone Miner Metab 22:415–429

    Article  CAS  PubMed  Google Scholar 

  62. Chenu C, Colucci S, Grano M, Zigrino P, Barattolo R, Zambonin G, Baldini N, Vergnaud P, Delmas PD, Zallone AZ (1994) Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J Cell Biol 127:1149–1158

    Article  CAS  PubMed  Google Scholar 

  63. Mundy GR, Poser JW (1983) Chemotactic activity of the gamma-carboxyglutamic acid containing protein in bone. Calcif Tissue Int 35:164–168

    Article  CAS  PubMed  Google Scholar 

  64. Liggett WH Jr, Lian JB, Greenberger JS, Glowacki J (1994) Osteocalcin promotes differentiation of osteoclast progenitors from murine long-term bone marrow cultures. J Cell Biochem 55:190–199

    Article  CAS  PubMed  Google Scholar 

  65. Malone JD, Teitelbaum SL, Griffin GL, Senior RM, Kahn AJ (1982) Recruitment of osteoclast precursors by purified bone matrix constituents. J Cell Biol 92:227–230

    Article  CAS  PubMed  Google Scholar 

  66. Glowacki J, Lian JB (1987) Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-deplete bone implants. Cell Differ 21:247–254

    Article  CAS  PubMed  Google Scholar 

  67. Price PA, Williamson MK (1981) Effects of warfarin on bone. Studies on the vitamin K-dependent protein of rat bone. J Biol Chem 256:12754–12759

    CAS  PubMed  Google Scholar 

  68. Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nikel O, Laurencin D, McCallum SA, Gundberg CM, Vashishth D (2013) NMR investigation of the role of osteocalcin and osteopontin at the organic-inorganic interface in bone. Langmuir 29:13873–13882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jung C, Ou YC, Yeung F, Frierson HF Jr, Kao C (2001) Osteocalcin is incompletely spliced in non-osseous tissues. Gene 271:143–150

    Article  CAS  PubMed  Google Scholar 

  71. Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B, Demer LL (1994) TGF-beta 1- and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93:2106–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ichikawa H, Itota T, Torii Y, Inoue K, Sugimoto T (1999) Osteocalcin-immunoreactive primary sensory neurons in the rat spinal and trigeminal nervous systems. Brain Res 838:205–209

    Article  CAS  PubMed  Google Scholar 

  73. Dhore CR, Cleutjens JP, Lutgens E, Cleutjens KB, Geusens PP, Kitslaar PJ, Tordoir JH, Spronk HM, Vermeer C, Daemen MJ (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1998–2003

    Article  CAS  PubMed  Google Scholar 

  74. Yuen CY, Wong SL, Lau CW et al (2012) From skeleton to cytoskeleton: osteocalcin transforms vascular fibroblasts to myofibroblasts via angiotensin II and Toll-like receptor 4. Circ Res 111:e55–e66

    Article  CAS  PubMed  Google Scholar 

  75. Rahman S, Oberdorf A, Montecino M, Tanhauser SM, Lian JB, Stein GS, Laipis PJ, Stein JL (1993) Multiple copies of the bone-specific osteocalcin gene in mouse and rat. Endocrinology 133:3050–3053

    CAS  PubMed  Google Scholar 

  76. Yanai T, Katagiri T, Akiyama S, Imada M, Yamashita T, Chiba H, Takahashi N, Suda T (2001) Expression of mouse osteocalcin transcripts, OG1 and OG2, is differently regulated in bone tissues and osteoblast cultures. J Bone Miner Metab 19:345–351

    Article  CAS  PubMed  Google Scholar 

  77. Bellows CG, Reimers SM, Heersche JN (1999) Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25-dihydroxyvitamin D3. Cell Tissue Res 297:249–259

    Article  CAS  PubMed  Google Scholar 

  78. Lian JB, Stein GS, Stewart C, Puchacz E, Mackowiak S, Aronow M, Von Deck M, Shalhoub V (1989) Osteocalcin: characterization and regulated expression of the rat gene. Connect Tissue Res 21:61–68

    Article  CAS  PubMed  Google Scholar 

  79. Clemens TL, Tang H, Maeda S, Kesterson RA, Demayo F, Pike JW, Gundberg CM (1997) Analysis of osteocalcin expression in transgenic mice reveals a species difference in vitamin D regulation of mouse and human osteocalcin genes. J Bone Miner Res 12:1570–1576

    Article  CAS  PubMed  Google Scholar 

  80. Zhang R, Ducy P, Karsenty G (1997) 1,25-Dihydroxyvitamin D3 inhibits osteocalcin expression in mouse through an indirect mechanism. J Biol Chem 272:110–116

    Article  CAS  PubMed  Google Scholar 

  81. Idelevich A, Rais Y, Monsonego-Ornan E (2011) Bone Gla protein increases HIF-1alpha-dependent glucose metabolism and induces cartilage and vascular calcification. Arterioscler Thromb Vasc Biol 31:e55–e71

    Article  CAS  PubMed  Google Scholar 

  82. Coleman RE, Mashiter G, Fogelman I, Whitaker KD, Caleffi M, Moss DW, Rubens RD (1988) Osteocalcin: a potential marker of metastatic bone disease and response to treatment. Eur J Cancer Clin Oncol 24:1211–1217

    Article  CAS  PubMed  Google Scholar 

  83. Neri B, Cecchettin M, Pacini P, Bartalucci S, Gemelli MT, Giorgi F (1989) Osteocalcin as a biological marker in the therapeutic management of breast cancer bone metastases. Cancer Invest 7:551–555

    Article  CAS  PubMed  Google Scholar 

  84. Zhou B, Li H, Liu J, Xu L, Zang W, Wu S, Sun H (2013) Intermittent injections of osteocalcin reverse autophagic dysfunction and endoplasmic reticulum stress resulting from diet-induced obesity in the vascular tissue via the NFkappaB-p65-dependent mechanism. Cell Cycle 12:1901–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou M, Ma X, Li H, Pan X, Tang J, Gao Y, Hou X, Lu H, Bao Y, Jia W (2009) Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol 161:723–729

    Article  CAS  PubMed  Google Scholar 

  86. Im JA, Yu BP, Jeon JY, Kim SH (2008) Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta 396:66–69

    Article  CAS  PubMed  Google Scholar 

  87. Hu WW, Ke YH, He JW, Fu WZ, Liu YJ, Chen D, Zhang ZL (2014) Serum osteocalcin levels are inversely associated with plasma glucose and body mass index in healthy Chinese women. Acta Pharmacol Sin 35:1521–1526

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2011) Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22:187–194

    Article  CAS  PubMed  Google Scholar 

  89. Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U, Mellstrom D (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:785–791

    Article  CAS  PubMed  Google Scholar 

  90. Yeap BB, Chubb SA, Flicker L, McCaul KA, Ebeling PR, Beilby JP, Norman PE (2010) Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. Eur J Endocrinol 163:265–272

    Article  CAS  PubMed  Google Scholar 

  91. Diaz-Lopez A, Bullo M, Juanola-Falgarona M, Martinez-Gonzalez MA, Estruch R, Covas MI, Aros F, Salas-Salvado J (2013) Reduced serum concentrations of carboxylated and undercarboxylated osteocalcin are associated with risk of developing type 2 diabetes mellitus in a high cardiovascular risk population: a nested case-control study. J Clin Endocrinol Metab 98:4524–4531

    Article  CAS  PubMed  Google Scholar 

  92. Ngarmukos C, Chailurkit LO, Chanprasertyothin S, Hengprasith B, Sritara P, Ongphiphadhanakul B (2012) A reduced serum level of total osteocalcin in men predicts the development of diabetes in a long-term follow-up cohort. Clin Endocrinol (Oxf) 77:42–46

    Article  Google Scholar 

  93. Bullo M, Moreno-Navarrete JM, Fernandez-Real JM, Salas-Salvado J (2012) Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and beta cell function in elderly men at high cardiovascular risk. Am J Clin Nutr 95:249–255

    Article  CAS  PubMed  Google Scholar 

  94. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94:827–832

    Article  CAS  PubMed  Google Scholar 

  95. Garanty-Bogacka B, Syrenicz M, Rac M, Krupa B, Czaja-Bulsa G, Walczak M, Sowinska-Przepiera E, Syrenicz A (2013) Association between serum osteocalcin, adiposity and metabolic risk in obese children and adolescents. Endokrynol Pol 64:346–352

    Article  CAS  PubMed  Google Scholar 

  96. Villafan-Bernal JR, Llamas-Covarrubias MA, Munoz-Valle JF, Rivera-Leon EA, Gonzalez-Hita ME, Bastidas-Ramirez BE, Gurrola-Diaz CM, Armendariz-Borunda JS, Sanchez-Enriquez S (2014) A cut-point value of uncarboxylated to carboxylated index is associated with glycemic status markers in type 2 diabetes. J Investig Med 62:33–36

    Article  CAS  PubMed  Google Scholar 

  97. Kim YS, Nam JS, Yeo DW, Kim KR, Suh SH, Ahn CW (2015) The effects of aerobic exercise training on serum osteocalcin, adipocytokines and insulin resistance on obese young males. Clin Endocrinol (Oxf) 82:686–694

    Article  CAS  Google Scholar 

  98. Yang C, Chen J, Wu F et al (2014) Effects of 60-day head-down bed rest on osteocalcin, glycolipid metabolism and their association with or without resistance training. Clin Endocrinol (Oxf) 81:671–678

    Article  CAS  Google Scholar 

  99. Aoki A, Muneyuki T, Yoshida M, Munakata H, Ishikawa SE, Sugawara H, Kawakami M, Kakei M (2011) Circulating osteocalcin is increased in early-stage diabetes. Diabetes Res Clin Pract 92:181–186

    Article  CAS  PubMed  Google Scholar 

  100. Abseyi N, Siklar Z, Berberoglu M, Hacihamdioglu B, Savas Erdeve S, Ocal G (2012) Relationships between osteocalcin, glucose metabolism, and adiponectin in obese children: Is there crosstalk between bone tissue and glucose metabolism? J Clin Res Pediatr Endocrinol 4:182–188

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mori K, Emoto M, Motoyama K, Lee E, Yamada S, Morioka T, Imanishi Y, Shoji T, Inaba M (2012) Undercarboxylated osteocalcin does not correlate with insulin resistance as assessed by euglycemic hyperinsulinemic clamp technique in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 4:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liatis S, Sfikakis PP, Tsiakou A, Stathi C, Terpos E, Katsilambros N, Makrilakis K (2014) Baseline osteocalcin levels and incident diabetes in a 3-year prospective study of high-risk individuals. Diabetes Metab 40:198–203

    Article  CAS  PubMed  Google Scholar 

  103. Saucedo R, Rico G, Vega G, Basurto L, Cordova L, Galvan R, Hernandez M, Puello E, Zarate A (2015) Osteocalcin, under-carboxylated osteocalcin and osteopontin are not associated with gestational diabetes mellitus but are inversely associated with leptin in non-diabetic women. J Endocrinol Invest 38:519–526

    Article  CAS  PubMed  Google Scholar 

  104. Hong SH, Koo JW, Hwang JK, Hwang YC, Jeong IK, Ahn KJ, Chung HY, Kim DY (2013) Changes in serum osteocalcin are not associated with changes in glucose or insulin for osteoporotic patients treated with bisphosphonate. J Bone Metab 20:37–41

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schwartz AV, Schafer AL, Grey A et al (2013) Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials. J Bone Miner Res 28:1348–1354

    Article  CAS  PubMed  Google Scholar 

  106. Poomthavorn P, Nantarakchaikul P, Mahachoklertwattana P, Chailurkit LO, Khlairit P (2014) Effects of correction of vitamin D insufficiency on serum osteocalcin and glucose metabolism in obese children. Clin Endocrinol (Oxf) 80:516–523

    Article  CAS  Google Scholar 

  107. Yoshikawa Y, Kode A, Xu L, Mosialou I, Silva BC, Ferron M, Clemens TL, Economides AN, Kousteni S (2011) Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res 26:2012–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sarkar PD, Choudhury AB (2013) Relationships between serum osteocalcin levels versus blood glucose, insulin resistance and markers of systemic inflammation in central Indian type 2 diabetic patients. Eur Rev Med Pharmacol Sci 17:1631–1635

    CAS  PubMed  Google Scholar 

  109. Greco EA, Francomano D, Fornari R et al (2013) Negative association between trunk fat, insulin resistance and skeleton in obese women. World J Diabetes 4:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  110. Iki M, Tamaki J, Fujita Y et al (2012) Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int 23:761–770

    Article  CAS  PubMed  Google Scholar 

  111. Wang Q, Zhang B, Xu Y, Xu H, Zhang N (2013) The relationship between serum osteocalcin concentration and glucose metabolism in patients with type 2 diabetes mellitus. Int J Endocrinol 2013:842598

    PubMed  PubMed Central  Google Scholar 

  112. Lucey AJ, Paschos GK, Thorsdottir I, Martinez JA, Cashman KD, Kiely M (2013) Young overweight and obese women with lower circulating osteocalcin concentrations exhibit higher insulin resistance and concentrations of C-reactive protein. Nutr Res 33:67–75

    Article  CAS  PubMed  Google Scholar 

  113. Liu JJ, Toy WC, Wong MD, Tan CS, Tavintharan S, Wong MS, Sum CF, Lim SC (2013) Elevated undercarboxylated and reduced carboxylated osteocalcin are associated with metabolic syndrome in middle age Asian females. Exp Clin Endocrinol Diabetes 121:329–333

    Article  PubMed  Google Scholar 

  114. Rui X, Xu B, Su J, Pan C, Zhan C, Su B, Li H, Wang J, Sheng H, Qu S (2014) Differential pattern for regulating insulin secretion, insulin resistance, and lipid metabolism by osteocalcin in male and female T2DM patients. Med Sci Monit 20:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Buday B, Pach FP, Literati-Nagy B, Vitai M, Vecsei Z, Koranyi L (2013) Serum osteocalcin is associated with improved metabolic state via adiponectin in females versus testosterone in males. Gender specific nature of the bone-energy homeostasis axis. Bone 57:98–104

    Article  CAS  PubMed  Google Scholar 

  116. Holvik K, van Schoor N, Eekhoff EM, Den Heijer M, Deeg DJ, Lips P, De Jongh R (2014) Plasma osteocalcin levels as a predictor for cardiovascular disease in older men and women: a population-based cohort study. Eur J Endocrinol 17:161–170

    Article  CAS  Google Scholar 

  117. Ogawa-Furuya N, Yamaguchi T, Yamamoto M, Kanazawa I, Sugimoto T (2013) Serum osteocalcin levels are inversely associated with abdominal aortic calcification in men with type 2 diabetes mellitus. Osteoporos Int 24:2223–2230

    Article  CAS  PubMed  Google Scholar 

  118. Swaminathan R (2001) Biochemical markers of bone turnover. Clin Chim Acta 313:95–105

    Article  CAS  PubMed  Google Scholar 

  119. Atalay S, Elci A, Kayadibi H, Onder CB, Aka N (2012) Diagnostic utility of osteocalcin, undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann Lab Med 32:23–30

    Article  CAS  PubMed  Google Scholar 

  120. Yang R, Ma X, Pan X, Wang F, Luo Y, Gu C, Bao Y, Jia W (2013) Serum osteocalcin levels in relation to metabolic syndrome in Chinese postmenopausal women. Menopause 20:548–553

    Article  PubMed  Google Scholar 

  121. Choudhury AB, Sarkar PD, Sakalley DK, Petkar SB (2014) Role of adiponectin in mediating the association of osteocalcin with insulin resistance and type 2 diabetes: a cross sectional study in pre- and post-menopausal women. Arch Physiol Biochem 120:73–79

    Article  CAS  PubMed  Google Scholar 

  122. Lu C, Ivaska KK, Alen M et al (2012) Serum osteocalcin is not associated with glucose but is inversely associated with leptin across generations of nondiabetic women. J Clin Endocrinol Metab 97:4106–4114

    Article  CAS  PubMed  Google Scholar 

  123. Kim S, Lee JY, Im JA, Kim DW, Lee HS, Kim SH, Lee JW (2013) Association between serum osteocalcin and insulin resistance in postmenopausal, but not premenopausal, women in Korea. Menopause 20:1061–1066

    Article  PubMed  Google Scholar 

  124. Caglar GS, Ozdemir ED, Kiseli M, Demirtas S, Cengiz SD (2014) The association of osteocalcin and adiponectin with glucose metabolism in nondiabetic postmenopausal women. Gynecol Obstet Invest 77:255–260

    Article  CAS  PubMed  Google Scholar 

  125. Bao Y, Zhou M, Lu Z, Li H, Wang Y, Sun L, Gao M, Wei M, Jia W (2011) Serum levels of osteocalcin are inversely associated with the metabolic syndrome and the severity of coronary artery disease in Chinese men. Clin Endocrinol (Oxf) 75:196–201

    Article  CAS  Google Scholar 

  126. Confavreux CB, Szulc P, Casey R, Boutroy S, Varennes A, Vilayphiou N, Goudable J, Chapurlat RD (2013) Higher serum osteocalcin is associated with lower abdominal aortic calcification progression and longer 10-year survival in elderly men of the MINOS cohort. J Clin Endocrinol Metab 98:1084–1092

    Article  CAS  PubMed  Google Scholar 

  127. Kapustin AN, Shanahan CM (2011) Osteocalcin: a novel vascular metabolic and osteoinductive factor? Arterioscler Thromb Vasc Biol 31:2169–2171

    Article  CAS  PubMed  Google Scholar 

  128. Hwang YC, Kang M, Cho IJ, Jeong IK, Ahn KJ, Chung HY, Lee MK (2015) Association between the circulating total osteocalcin level and the development of cardiovascular disease in middle-aged men: a mean 8.7-year longitudinal follow-up study. J Atheroscler Thromb 22:136–143

    Article  CAS  PubMed  Google Scholar 

  129. Maser RE, Lenhard MJ, Sneider MB, Pohlig RT (2015) Osteoprotegerin is a better serum biomarker of coronary artery calcification than osteocalcin in type 2 diabetes. Endocr Pract 21:14–22

    Article  PubMed  Google Scholar 

  130. Liao M, Guo X, Yu X et al (2013) Role of metabolic factors in the association between osteocalcin and testosterone in Chinese men. J Clin Endocrinol Metab 98:3463–3469

    Article  CAS  PubMed  Google Scholar 

  131. Kanazawa I, Tanaka K, Ogawa N, Yamauchi M, Yamaguchi T, Sugimoto T (2013) Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus. Osteoporos Int 24:1115–1119

    Article  CAS  PubMed  Google Scholar 

  132. Schwetz V, Gumpold R, Graupp M, Hacker N, Schweighofer N, Trummer O, Pieber TR, Ballon M, Lerchbaum E, Obermayer-Pietsch B (2013) Osteocalcin is not a strong determinant of serum testosterone and sperm count in men from infertile couples. Andrology 1:590–594

    Article  CAS  PubMed  Google Scholar 

  133. Ferron M, Wei J, Yoshizawa T, Ducy P, Karsenty G (2010) An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem Biophys Res Commun 397:691–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nishimura J, Arai N, Tohmatsu J (2007) Measurement of serum undercarboxylated osteocalcin by ECLIA with the “Picolumi ucOC” kit. Clin Calcium 17:1702–1708

    CAS  PubMed  Google Scholar 

  135. Srivastava AK, Mohan S, Singer FR, Baylink DJ (2002) A urine midmolecule osteocalcin assay shows higher discriminatory power than a serum midmolecule osteocalcin assay during short-term alendronate treatment of osteoporotic patients. Bone 31:62–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Basic Research Program of China (No. 2011CB707704); the National Natural Science Foundation of China (no. 31470832); National Instrumentation Program of China (No. 2013YQ190467); Advanced Space Medico-engineering Research Project of China (2012SY54A1602); the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (SMFA12B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongquan Dai.

Ethics declarations

Conflicts of interest

Jinqiao Li, Hongyu Zhang, Chao Yang, Jian Chen, Yinghui Li and Zhongquan Dai declare no conflict of interest.

Additional information

Jinqiao Li and Hongyu Zhang have contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, H., Yang, C. et al. An overview of osteocalcin progress. J Bone Miner Metab 34, 367–379 (2016). https://doi.org/10.1007/s00774-015-0734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0734-7

Keywords

Navigation