Skip to main content

Advertisement

Log in

Bacteriocinogenic Potential of Bacillus amyloliquefaciens Isolated from Kimchi, a Traditional Korean Fermented Cabbage

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bacteriocin production is considered a favorable property for various beneficial cultures. In addition to their potential as biopreservatives, bacteriocins are also promising alternatives for the control of multidrug-resistant pathogens and the inhibition of some viruses and cancer cells. The objective of this study was to screen and characterize a bacteriocin-producing strain with the aim of its future application for control of Listeria monocytogenes, an important food-borne pathogen. A total of 22 potentially bacteriocinogenic strains active against L. monocytogenes ATCC15313 were isolated from locally produced kimchi through a three-level approach. Pure cultures were obtained according to good microbiological practices and differentiated through RAPD-PCR using the primers OPL01, OPL09, and OPL11. Altogether, 5 strains were selected for further study. Specific focus was given to strain ST05DL based on its specific inhibitory activity against L. monocytogenes ATCC15313, while not affecting different strains belonging to the genera Lactobacillus, Pediococcus, Leuconostoc, and Weissella, most of which are beneficial microorganisms. The strain ST05DL was identified as Bacillus amyloliquefaciens based on its sugar fermentation profile obtained through API50CHB analysis and 16S rRNA partial sequencing. The antimicrobial compound produced by B. amyloliquefaciens ST05DL was found to be sensitive to pepsin and α-chymotrypsin, evidence of its proteinaceous nature. The presence of skim milk, NaCl, Tween 80, glycerol, and SDS did not affect the antimicrobial activity. The addition of 20% cell-free supernatant (CFS) obtained from a 24-h culture of B. amyloliquefaciens ST05DL to an exponentially growing culture of L. monocytogenes ATCC15313 successfully inhibited the test microorganisms during the monitored 10-h incubation. Optimal bacteriocin production by B. amyloliquefaciens ST05DL was observed during the stationary phase at 12 h (800 AU/mL) and remained stable for the next 15 h. The ratio between live and dead cells during this period was 74.37% and 25.66%, respectively, as determined by flow cytometry. The presence of the virulence genes hblA, hblB, hblC, nheA, nheB, and nheC was not detected in the total DNA of B. amyloliquefaciens ST05DL, and the strain was resistant only to ampicillin out of 10 tested antibiotics. Future evaluation of expressed bacteriocin/s by B. amyloliquefaciens ST05DL (amino acid sequence, molecular mass, cytotoxicity, detailed mode of action, etc.), will be the next step in the characterization and its potential application as biopreservative and/or pharmaceutical product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and comply with research standards.

References

  1. Todorov SD, Franco BDGM, Tagg JR (2019) Bacteriocins of Gram positive bacteria having activity spectra extending beyond closely-related species. Benef Microbs 10(3):315–328. https://doi.org/10.3920/BM2018.0126

    Article  CAS  Google Scholar 

  2. Ouoba LI, Diawara B, Amoa-AwuaWk Traoré AS, Møller PL (2004) Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int J Food Microbiol 90(2):197–205. https://doi.org/10.1016/s0168-1605(03)00302-7

    Article  CAS  PubMed  Google Scholar 

  3. Bintsis T (2018) Lactic acid bacteria as starter cultures: an update in their metabolism and genetics. AIMS Microbiol 4(4):665–684. https://doi.org/10.3934/microbiol.2018.4.665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holzapfel W (1997) Use of starter cultures in fermentation on a household scale. Food Control 8(5–6):241–258. https://doi.org/10.1016/S0956-7135(97)00017-0

    Article  Google Scholar 

  5. Jeon HH, Jung JY, Chun BH, Kim MD, Baek SY, Moon JY, Yeo SH, Jeon CO (2016) Screening and characterization of potential Bacillus starter cultures for fermenting low-salt soybean paste (doenjang). J Microbiol Biotechnol 26(4):666–674. https://doi.org/10.4014/jmb.1512.12014

    Article  CAS  PubMed  Google Scholar 

  6. Aliakbarpour HR, Chamani M, Rahimi G, Sadeghi AA, Qujeq D (2012) The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australas J Anim Sci 25(9):1285–1293. https://doi.org/10.5713/ajas.2012.12110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spencer RC (2003) Bacillus anthracis. J Clin Pathol 56:182–187. https://doi.org/10.1136/jcp.56.3.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ehling-Schulz M, Lereclus D, Koehler TM (2019) The Bacillus cereus Group: Bacillus species with pathogenic potential. Microbiol Spectrum 7(3):GPP3-0032. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018

  9. Oguntoyinbo FA, Sanni AI, Franz CMAP, Holzapfel WH (2016) In vitro fermentation studies for selection and evaluation of bacillus strains as starter cultures for the production of okpehe, a traditional African fermented condiment. Int J Food Microbiol 113(2):208–218. https://doi.org/10.1016/j.ijfoodmicro.2006.07.006

    Article  CAS  Google Scholar 

  10. Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41(3):711–753 (PMID: 334155)

    Article  CAS  Google Scholar 

  11. Latorre JD, Hernandez-Velasco X, Wolfenden RE, Vicente JL, Wolfenden AD, Menconi A, Bielke LR, Hargis BM, Tellez G (2016) Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front Vet Sci 3:95. https://doi.org/10.3389/fvets.2016.00095

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

    Article  CAS  PubMed  Google Scholar 

  13. Barg H, Malten M, Jahn M, Jahn D (2005) Protein and vitamin production in Bacillus megaterium. In: Barredo JL (eds) Microbial processes and products. Methods in Biotechnology, vol 18. Humana Press, Springer Nature, Switzerland. https://doi.org/10.1385/1-59259-847-1:205

  14. Daliri EB, Oh DH, Lee BH (2017) Bioactive peptides. Foods 6(5):32. https://doi.org/10.3390/foods6050032

    Article  CAS  Google Scholar 

  15. Lee NK, Kim SY, Chang HI, Park E, Paik HD (2019) Immunomodulatory and antigenotoxic properties of Bacillus amiloliquefaciens KU801. Korean J Microbiol Biotechnol 41(2):249–252. https://doi.org/10.4014/kjmb.1301.01008

    Article  CAS  Google Scholar 

  16. Du R, Jiao S, Dai Y, An J, Lv J, Yan X, Wang J, Han B (2018) Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Front Microbiol 9:2006. https://doi.org/10.3389/fmicb.2018.02006

    Article  PubMed  PubMed Central  Google Scholar 

  17. Algburi A, Alazzawi SA, Al-Ezzy AIA, Weeks R, Chistyakov V, Chikindas ML (2020) Potential probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 co-aggregate with clinical isolates of Proteus mirabilis and prevent biofilm formation. Probiotics Antimicro Prot. 12:1471–1483. https://doi.org/10.1007/s12602-020-09631-0

    Article  CAS  Google Scholar 

  18. Hong HA, Khaneja R, Tam NMK, Cazzato A, Tan SM, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143. https://doi.org/10.1016/j.resmic.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG (2017) Secretome of intestinal bacilli: a natural guard against pathologies. Front Microbiol 8:1666. https://doi.org/10.3389/fmicb.2017.01666

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490. https://doi.org/10.3389/fmicb.2017.01490

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khatri I, Sharma G, Subramanian S (2019) Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol 19:307. https://doi.org/10.1186/s12866-019-1680-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Field D, Cotter PD, Hill C, Ross RP (2015) Bioengineering Lantibiotics for therapeutic success. Front Microbiol. 6:1363. https://doi.org/10.3389/fmicb.2015.01363

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ciffo F (1984) Determination of the spectrum of antibiotic resistance of the Bacillus subtilis strains of Enterogermina. Chemioter 3:45–52 (PMID: 6442972)

    CAS  Google Scholar 

  24. McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64:439–445 (PMID: 9464377)

    Article  CAS  Google Scholar 

  25. Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N, Zendo T, Sonomoto K (2011) Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol 77:8164–8170. https://doi.org/10.1128/AEM.06348-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS (2006) The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J Antimicrob Chemother 59:297–300. https://doi.org/10.1093/jac/dkl495

    Article  CAS  Google Scholar 

  27. Hongu N, Kim AS, Suzuki A, Wilson H, Tsui KC, Park S (2016) Korean kimchi: promoting healthy meals through cultural tradition. J Ethnic Foods 4(3):172–180. https://doi.org/10.1016/j.jef.2017.08.005

    Article  Google Scholar 

  28. de Vos P, Garrity GM, Jones D, Kreig NR, Ludwig W, Rainey FA, Schleifel K-H, Whitman WB (2009) Bergey’s manual of systematic bacteriology, vol 3. Wiley Publishing Group, Hoboken, NJ, USA, The Firmicutes. https://doi.org/10.1002/9781118960608

    Book  Google Scholar 

  29. dos Santos KMO, de Matos CR, Salles HO, Franco BDGM, Arellano K, Holzapfel WH, Todorov SD (2020) Exploring beneficial/virulence properties of two dairy related strains of Streptococcus infantarius subsp. infantarius. Probiotics Antimicro Prot 12(4):1524-1541. https://doi.org/10.1007/s12602-020-09637-8

  30. Todorov SD, Cavicchioli VQ, Ananieva M, Bivolarski VP, Vasileva TA, Hinkov AV, Todorov DG, Shishkov S, Haertlé T, Iliev IN, Nero LA, Ivanova IV (2019) Expression of coagulin A with low cytotoxic activity by Pediococcus pentosaceus ST65ACC isolated from raw milk cheese. J Appl Microbiol 128(2):458–472. https://doi.org/10.1111/jam.14492

    Article  CAS  PubMed  Google Scholar 

  31. de Moraes GMD, de Abreu LR, do Egito AS, Salles HO, da Silva LMF, Nero LA, Todorov SD, dos Santos KMO, (2016) Functional properties of Lactobacillus mucosae strains isolated from Brazilian goat milk. Probiotics Antimicro Prot 9(3):235–245. https://doi.org/10.1007/s12602-016-9244-8

    Article  CAS  Google Scholar 

  32. Chopra L, Singh G, Choudhary V, Sahoo DK (2014) Sonorensin: an antimicrobial peptide, belonginig to the heterocycloantharicin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl Environ Microbiol 80(10):2981–2990. https://doi.org/10.1128/AEM.04259-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Todorov SD, Stojanovski S, Iliev I, Moncheva P, Nero LA, Ivanova IV (2017) Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product “Lukanka”. Braz J Microbiol 48(3):576–586. https://doi.org/10.1016/j.bjm.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nettmann E, Fröhling A, Heeg K, Klocke M, Schlüter O, Mumme J (2013) Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiol 13(1):278. https://doi.org/10.1186/1471-2180-13-278

  35. Yang R, Johnson MC, Ray B (1992) Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl Environ Microbiol 58(10):3355–3359 (PMID: 14444369)

    Article  CAS  Google Scholar 

  36. Guinebretiére M-H, Broussolle V, Nguyen-The C (2002) Enterotoxigenic profile of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol 40(8):3053–3056. https://doi.org/10.1128/jcm.40.8.3053-3056.2002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Colombo M, Castilho NPA, Todorov SD, Nero LA (2018) Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiol 18(1):219–230. https://doi.org/10.1186/s12866-018-1356-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bover-Cid S, Holzapfel WH (2019) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41. https://doi.org/10.1016/s0168-1605(99)00152-x

    Article  Google Scholar 

  39. Tamang JP (2010) Himalayan fermented foods: Microbiology, nutrition, and ethnic values. CRC Press, Taylor & Francis Group, New York, NY, USA

  40. Amoa-Awua WK, Terlabie NN, Sakyi-Dawson E (2006) Screening of Bacillus isolates for ability to ferment soybeans into dawadawa. Int J Food Microbiol 106:343–347. https://doi.org/10.1016/j.ijfoodmicro.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  41. Rhee SJ, Lee JE, Lee CH (2011) Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Fact 10(Suppl 1):S5. https://doi.org/10.1186/1475-2859-10-S1-S5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Choi Y, Lee S, Kim HJ, Lee H, Kim S, Lee J, Ha J, Oh H, Choi K, Yoon Y (2018) Pathogenic Escherichia coli and Salmonella can survive in kimchi during fermentation. J Food Prot 81(6):942–946. https://doi.org/10.4315/0362-028X.JFP-17-459

    Article  CAS  PubMed  Google Scholar 

  43. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  44. Ogier J-C, Casalta E, Farrokh C, Saïhi A (2008) Safety assessment of dairy microorganisms: the Leuconostoc genus. Int J Food Microbiol 126(3):286–290. https://doi.org/10.1016/j.ijfoodmicro.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  45. Pingitore EV, Todorov SD, Sesma F, Franco BDGM (2012) Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol 32(1):38–47. https://doi.org/10.1016/j.fm.2012.04.005

    Article  Google Scholar 

  46. Hammami R, Fliss I, Corsetti A (2019) Editorial: Application of protectivecultures and bacteriocin for foodbiopreservation. Front Microbiol 10:1561–1562. https://doi.org/10.3389/fmicb.2019.01561

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee JY, Shim JM, Yao Z, Liu X, Lee KW, Kim H, Ham K, Kim JH (2016) Antimicrobial activity of Bacillus amyloliquefaciens EMD17 isolated from Cheonggukjang and potential use as a starter for fermented soy foods. Food Sci Biotechnol 25(2):525–532. https://doi.org/10.1007/s10068-016-0073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaewklom S, Lumlert S, Kraikul W, Aunpad R (2013) Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kappi). Food Control 32:552–557. https://doi.org/10.1016/j.foodcont.2013.01.012

    Article  CAS  Google Scholar 

  49. Sharma G, Dang S, Gupta S, Gabrani R (2018) Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med Princ Pract 27:186–192. https://doi.org/10.1159/000487306

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cho MS, Jin YJ, Kang BK, Park YK, Kim CK, Park DS (2018) Understanding the ontogeny and succession of Bacillus velezensis and B. subtilis subsp. subtilis by focusing on kimchi fermentation. Sci Rep 8:7045. https://doi.org/10.1038/s41598-018-25514-5

  51. Rahman M, Choi YH, Choi YS Yoo JC (2017) Glycin-rich antimicrobial peptide YD1 from B. amyloliquefaciens, induced morphological alteration in and showed affinity for plasmid DNA of E. coli. AMB Expr 7:8. https://doi.org/10.1186/s13568-016-0315-8

  52. Hosoi T, Kiuchi K (2003) Natto – a food made by fermenting cooked soybeans with Bacillus subtilis (natto). In: Fermented functional foods, (ed) Farnworth ER. CRC Press, Boca Raton, FL, USA, pp 227–251

    Google Scholar 

  53. Soni SK, Sandhu DK, Vilkhu KS, Kamra N (1986) Microbiological studies on Dosa fermentation. Food Microbiol 3(1):45–53. https://doi.org/10.1016/S0740-0020(86)80025-9

    Article  Google Scholar 

  54. Saising J, Dube L, Ziebandt A-K, Voravuthikunchai SP, Nega M, Götz F (2012) Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 56:5804–5810. https://doi.org/10.1128/AAC.01296-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalyon B, Helaly SE, Scholz R, Nachtigall J, Vater J, Borriss R, Sussmuth RD (2011) Plantazolicin A and B: structure elucidation or ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett 13(12):2996–2999. https://doi.org/10.1021/ol200809m

    Article  CAS  PubMed  Google Scholar 

  56. Kawai Y, Kemperman R, Kok J, Saito T (2004) The circular bacteriocins gassericin A and circularin A. Curr Protein Pept Sci 5:393–398. https://doi.org/10.2174/1389203043379549

    Article  CAS  PubMed  Google Scholar 

  57. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75(17):5451–5460. https://doi.org/10.1128/AEM.00730-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Simmonds RS, Pearson L, Kennedy RC, Tagg JR (1996) Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl Environ Microbiol 62:4536–4541 http://www.ncbi.nlm.nih.gov/pubmed/8953725

  59. Tomás MS, Claudia Otero M, Ocaña V, Elena Nader-Macías M (2004) Production of antimicrobial substances by lactic acid bacteria I: determination of hydrogen peroxide. Methods Mol Biol 268:337–346. https://doi.org/10.1385/1-59259-766-1:337

    Article  PubMed  Google Scholar 

  60. Keppler K, Geisen R, Holzapfel WH (1994) An α-amylase sensitive bacteriocin of Leuconostoc carnosum. Food Microbiol 11(1):39–45. https://doi.org/10.1006/fmic.1994.1006

    Article  CAS  Google Scholar 

  61. Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan MA (eds) Bacteriocins. Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-540-36604-1_4

  62. Ozawa K, Yokota H, Kimura M, Mitsuoka T (1981) Effects of administration of Bacillus subtilis strain BN on intestinal flora of weanling piglets. Nihon Juigaku Zasshi 43:771–775. https://doi.org/10.1292/jvms1939.43.771

    Article  CAS  PubMed  Google Scholar 

  63. Nagal S, Okimura K, Kaizawa N, Ohki K, Kanatomo S (1996) Study on surfactin, a cyclic depsipeptide. II. Synthesis of surfactin B2 produced by Bacillus natto KMD 2311. Chem Phar Bull Tokyo 44:5–10. https://doi.org/10.1248/cpb.44.5

    Article  CAS  Google Scholar 

  64. Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillaes species. BMC Genomics 17(1):882. https://doi.org/10.1186/s12864-016-3224-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pinchuk IV, Bressollier P, Verneuil B, Fenet B, Sorokulova IB, Megraud F, Urdaci MC (2001) In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Chemother 45:3156–3161. https://doi.org/10.1128/AAC.45.11.3156-3161.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Le Duc H, Hong HA, Barbosa TM, Henrriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70(4):2161–2171. https://doi.org/10.1128/AEM.70.4.2161-2171.2004

    Article  CAS  PubMed Central  Google Scholar 

  67. Aasen IM, Møretrø T, Katla T, Axelsson L, Storrø I (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol 53(2):159–166. https://doi.org/10.1007/s002530050003

    Article  CAS  PubMed  Google Scholar 

  68. Bogovic-Matijasic B, Rogelj I (1998) Bacteriocin complex of Lactobacillus acidophilus LF221 – production studies in MRS media at different pH values and effect against Lactobacillus helveticus ATCC15009. Process Biochem 33(3):345–352. https://doi.org/10.1016/S0032-9592(97)00073-3

    Article  CAS  Google Scholar 

  69. Krier F, Revol-Junelles AM, Germain P (1998) Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl Microbiol Biotechnol 50:359–363. https://doi.org/10.1007/s002530051304

    Article  CAS  PubMed  Google Scholar 

  70. Matsusaki H, Endo N, Sonomoto K, Ishizaki A (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: Relationship between production of the lantibiotic and lactate and cell growth. Appl Microbiol Biotechnol 45:36–40. https://doi.org/10.1007/s002530050645

    Article  CAS  PubMed  Google Scholar 

  71. Mortvedt-Abildgaard CI, Nissen-Meyer J, Jelle B, Grenov B, Skaugen M, Nes IF (1995) Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake L45. Appl Environ Microbiol 61:175–179 (PMID: 16534901)

    Article  CAS  Google Scholar 

  72. Todorov SD, Dicks LMT (2004) Characterization of mesentericin ST99, a bacteriocin produced by Leuconostoc mesenteroides subsp. dextranicum ST99 isolated from boza. J Ind Microbiol Biotechnol 31(7):323-329. https://doi.org/10.1007/s10295-004-0153-6

  73. Todorov SD, Ho P, Vaz-Velho M, Dicks LMT (2010) Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Sci 84(3):334–343. https://doi.org/10.1016/j.meatsci.2009.08.053

    Article  CAS  PubMed  Google Scholar 

  74. Umu ÖC, Bäuerl C, Oostindjer M, Pope PB, Hernandez PE, Perez-Martinez G, Diep DB (2016) The Potential of class II bacteriocins to modify gut microbiota to improve host health. PLoS One 11(10):e0164036. https://doi.org/10.1371/journal.pone.0164036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim SG, Becattini S, Moody TU, Shliaha PV, Littmann ER, Seok R, Gjonbalaj M, Eaton V, Fontana E, Amoretti L, Wright R, Caballero S, Wang ZMX, Jung HJ, Morjaria SM, Leiner IM, Qin W, Ramos RJJF, Cross JR, Narushima S, Honda K, Peled JU, Hendrickson RC, Taur Y, van den Brink MRM, Pamer EG (2019) Microbiota-derived lantibiotic restores resistance against vancomycin–resistant Enterococcus. Nature 572:665–688. https://doi.org/10.1038/s41586-019-1501-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park H, Lee M, Ji Y, Todorov SD, Holzapfel WH (2020) Safety evaluation and in vivo strain-specific functionality of Bacillus strains isolated from Korean traditional fermented foods. Probiotics Antimicro Prot. 13(1):60-71. https://doi.org/10.1007/s12602-020-09672-5

    Article  Google Scholar 

  77. El Mecherfi K-E, Todorov SD, de Albuquerque MC, Denery-Papini S, Lupi R, Haertlé T, Franco BDGM, Larré C (2020) Allergenicity of fermented foods: emphasis on seeds protein based product. Foods 9(6):792. https://doi.org/10.3390/foods9060792

    Article  CAS  PubMed Central  Google Scholar 

  78. Montel MC, Masson F, Talon R (1998) Bacterial role in flavour development. Meat Sci 49:111–123. https://doi.org/10.1016/S0309-1740(98)90042-0

    Article  Google Scholar 

  79. de Paula AT, Jeronymo-Ceneviva AB, Todorov SD, Penna ALB (2015) The two faces of Leuconostoc mesenteroides in food sistems. A review. Food Rev Int 31(2):147–171. https://doi.org/10.1080/87559129.2014.981825

    Article  Google Scholar 

  80. Cavicchioli VC, Camargo AC, Todorov SD, Nero LA (2016) Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with anti-listerial activity isolated from Brazilian homemade cheese. J Dairy Sci 100(4):2526–2535. https://doi.org/10.3168/jds.2016-12049

    Article  CAS  Google Scholar 

  81. Sabaté DC, Audisio MC (2013) Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol Res 168(3):125-129. https://doi.org/10.1016/j.micres.2012.11.004

  82. Shi J, Zhu X, Lu Y, Zhao H, Lu F, Lu Z (2018) Improving iturin A production of Bacillus amyloliquefaciens by genome shuffling and its inhibition against Saccharomyces cerevisiae in orange juice. Front Microbiol 9:2683. https://doi.org/10.3389/fmicb.2018.02683

    Article  PubMed  PubMed Central  Google Scholar 

  83. van Kuijk S, Noll KS, Chikindas ML (2012) The species-specific mode of action of the antimicrobial peptide subtilosin against Listeria monocytogenes Scott A. Lett Appl Microbiol 54(1):52–58. https://doi.org/10.1111/j.1472-765X.2011.03170.x

    Article  CAS  PubMed  Google Scholar 

  84. Kamoun F, Fguira IB, Hassen NBB, Mejdoub H, Lereclus D, Jaoua S (2011) Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Appl Biochem Biotechnol 165:300–314. https://doi.org/10.1007/s12010-011-9252-9

    Article  CAS  PubMed  Google Scholar 

  85. Gutierrez-Cortes C, Suarez H, Butirago G, Nero LA, Todorov SD (2018) Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Ann Microbiol 68(6):383–398. https://doi.org/10.1007/s13213-018-1345-z

    Article  CAS  Google Scholar 

  86. Agata N, Ohta M, Yokoyama K (2002) Production of Bacillus cereus emetic toxin (cereulide) in various food. Int J Food Microbiol 73:23–27. https://doi.org/10.1016/s0168-1605(01)00692-4

    Article  CAS  PubMed  Google Scholar 

  87. dos Anjos TR, Cavicchioli VQ, Lima JAS, Vasconcellos AN, Vaz ACN, Rossi GAM, Campos-Galvão MEM, Todorov SD, Mathias LA, Schocken-Iturrino RP, Nero LA, Vidal AMC (2019) Unsatisfactory microbiological aspects of UHT goatmilk, soymilk and dairy beverage of goatmilk and soyprotein: a public health issue. Food Sci Technol 40(Suppl 1):349–354. https://doi.org/10.1590/fst.14019

    Article  Google Scholar 

  88. Bartoszewicz M, Hansen BM, Swiecicka I (2008) The members of the Bacillus cereus group are commonly present in fresh and heat-treated milk. Food Microbiol 25(4):588–596. https://doi.org/10.1016/j.fm.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  89. Svensson B, Monthán A, Guinebretiére MH, Nguyen-The C, Christiansson A (2007) Toxin production potential and the detection of toxin genes among strains of the Bacillus cereus group isolated along the dairy production chain. Int Dairy J 17:1201–1208. https://doi.org/10.1016/j.idairyj.2007.03.004

    Article  CAS  Google Scholar 

  90. Kim M-J, Han J-K, Park J-S, Lee J-S, Lee S-H, Cho J-I, Kim K-S (2015) Various enterotoxins and other virulence factor genes widespread among Bacillus cereus and Bacillus thuringiensis strains. J Microbiol Biotechnol 25:872–879. https://doi.org/10.4014/jmb.1502.02003

    Article  CAS  PubMed  Google Scholar 

  91. Park KM, Kim HJ, Jeong MC, Koo M (2016) Occurrence of toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean fermented soybean past. J Food Protect 79(4):605–612. https://doi.org/10.4315/0362-028X.JFP-15-416

    Article  CAS  Google Scholar 

  92. Forghani F, Kim JB, Oh DH (2014) Enterotoxigenic profiling of emetic toxin and enterotoxin-producing Bacillus cereus, isolated from food, environmental, and clinical samples by multiplex PCR. J Food Sci 79:M2288–M2293. https://doi.org/10.1111/1750-3841.12666

    Article  CAS  PubMed  Google Scholar 

  93. EFSA (2012) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion: Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6):2740

  94. Vesterlund S, Vankerckhoven V, Saxelin M, Goossens H, Salminen S, Ouwehand AC (2007) Safety assessment of Lactobacillus strains: Presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol 116:325–331. https://doi.org/10.1016/j.ijfoodmicro.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  95. Özogul Y, Özogul F (2019) Chapter 1: Biogenic amines formation, toxicity, regulations in food. In: Biogenic amines in food: analysis, occurrence and toxicity; pp. 1–17. Royal society of Chemistry, Cambridge, UK. https://doi.org/10.1039/9781788015813-00001

  96. EFSA (2011) Scientific Opinion on risk-based control of biogenic amine formation infermented foods. EFSA Panel on Biological Hazards (BIOHAZ). EFSA J 8(10):2293. https://doi.org/10.2903/j.efsa.2011.2393

  97. Barbieri F, Montanari C, Gardini F, Tabanelli G (2019) Biogenic amine production by lactic acid bacteria: a review. Foods 8:17. https://doi.org/10.3390/foods8010017

    Article  CAS  PubMed Central  Google Scholar 

  98. Alvarez MA, Moreno-Arribas MV (2014) The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci Technol 39:146–155. https://doi.org/10.1016/j.tifs.2014.07.007

    Article  CAS  Google Scholar 

  99. Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the north Portugal. Food Control 21:651–656

    Article  Google Scholar 

  100. Franz CMAP, Muscholl-Silberhorn AB, Yousif NMK, Vancanneyt M, Swings J, Holzapfel WH (2001) Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl Environ Microbiol 67:4385–4389

    Article  CAS  Google Scholar 

Download references

Funding

Grants from the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2018M3A9F3021964; NRF-2016M3A9A5923160), Seoul, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Concept: SDT; experimental work: SJ, CW, JIIF, JEVB, SDT; data analysis: JIIF, SDT; funds: WHH, SDT; writing of the manuscript: SDT; corrections and editing: WHH, SDT.

Corresponding author

Correspondence to Svetoslav Dimitrov Todorov.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Woo, C., Fugaban, J.I.I. et al. Bacteriocinogenic Potential of Bacillus amyloliquefaciens Isolated from Kimchi, a Traditional Korean Fermented Cabbage. Probiotics & Antimicro. Prot. 13, 1195–1212 (2021). https://doi.org/10.1007/s12602-021-09772-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09772-w

Keywords

Navigation