Skip to main content
Log in

Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and “healthy” fermented meat products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hui Y, Astiasaran I, Sebranek J, Talon R, Toldrá F (2014) Handbook of fermented meat and poultry. Wiley

  2. Lücke F-K (2000) Utilization of microbes to process and preserve meat. Meat Sci 56(2):105–115

    Article  Google Scholar 

  3. Ninios RL, Ahomaa MF, Korkeala H (2014) Enteropathogenic Yersinia in the pork production chain: challenges for control. Compr Rev Food Sci Food Saf 13(6):1165–1191

    Article  Google Scholar 

  4. Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M (2002) Food spoilage—interactions between food spoilage bacteria. Int J Food Microbiol 78(1):79–97

    Article  Google Scholar 

  5. Chen J, Ren Y, Seow J, Liu T, Bang W, Yuk H (2012) Intervention technologies for ensuring microbiological safety of meat: current and future trends. Compr Rev Food Sci Food Saf 11(2):119–132

    Article  CAS  Google Scholar 

  6. Ojha KS, Kerry JP, Duffy G, Beresford T, Tiwari BK (2015) Technological advances for enhancing quality and safety of fermented meat products. Trends Food Sci Technol 44(1):105–116

    Article  CAS  Google Scholar 

  7. Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W (2016) Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci 120:118–132

    Article  CAS  Google Scholar 

  8. Chen H, Hoover D (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2(3):82–100

    Article  CAS  Google Scholar 

  9. Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3:287

    Article  Google Scholar 

  10. Deshmukh P, Thorat P (2013) Bacteriocins: a new trend in antimicrobial food packaging. Int J Advanced Res Engineering Appl Sci 1:1–12

    Google Scholar 

  11. Food, Administration D (1988) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Fed Regist 53:11247–11251

    Google Scholar 

  12. Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56(8):1262–1274

    Article  CAS  Google Scholar 

  13. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    Article  CAS  Google Scholar 

  14. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Ann Rev Microbiol 56(1):117–137

    Article  CAS  Google Scholar 

  15. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Factories 13(1):1

    Article  CAS  Google Scholar 

  16. Balciunas EM, Martinez FAC, Todorov SD, Franco BDGM, Converti A, Oliveira RPS (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32(1):134–142

    Article  CAS  Google Scholar 

  17. O’Connor PM, Ross RP, Hill C, Cotter PD (2015) Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2:51–57

    Article  Google Scholar 

  18. Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets 3(2):107–122

    Article  CAS  Google Scholar 

  19. Gillor O, Etzion A, Riley M (2008) The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 81(4):591–606

    Article  CAS  Google Scholar 

  20. Heng NC, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan MA (eds) Bacteriocins. Springer, Berlin, pp 45–92

    Chapter  Google Scholar 

  21. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1–3):39–85

    Article  CAS  Google Scholar 

  22. Rea MC, Ross RP, Cotter PD, Hill C (2011) Classification of bacteriocins from Gram-positive bacteria. In: Prokaryotic antimicrobial peptides. Springer, pp 29–53

  23. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25(3):285–308

    Article  CAS  Google Scholar 

  24. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70(2):564–582

    Article  CAS  Google Scholar 

  25. Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE (2010) Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrobial Proteins 2(1):52–60

    Article  CAS  Google Scholar 

  26. Maqueda M, Sánchez-Hidalgo M, Fernández M, Montalbán-López M, Valdivia E, Martínez-Bueno M (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32(1):2–22

    Article  CAS  Google Scholar 

  27. Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80(22):6854–6862

    Article  CAS  Google Scholar 

  28. Sivonen K, Leikoski N, Fewer DP, Jokela J (2010) Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86(5):1213–1225

    Article  CAS  Google Scholar 

  29. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100(7):2939–2951

    Article  CAS  Google Scholar 

  30. Ammor S, Dufour E, Zagorec M, Chaillou S, Chevallier I (2005) Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures. Food Microbiol 22(6):529–538

    Article  CAS  Google Scholar 

  31. Hugas M, Garriga M, Aymerich M (2003) Functionalty of enterococci in meat products. Int J Food Microbiol 88(2):223–233

    Article  CAS  Google Scholar 

  32. Hugo CJ, Hugo A (2015) Current trends in natural preservatives for fresh sausage products. Trends Food Sci Technol 45(1):12–23

    Article  CAS  Google Scholar 

  33. Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci 76(1):138–146

    Article  CAS  Google Scholar 

  34. Hugas M, Monfort JM (1997) Bacterial starter cultures for meat fermentation. Food Chem 59(4):547–554

    Article  CAS  Google Scholar 

  35. Rahman U, Khan MI, Sohaib M, Sahar A, Ishaq A (2017) Exploiting microorganisms to develop improved functional meat sausages: a review. Food Reviews Inter 33(2):195–215

    Article  Google Scholar 

  36. Chaillou S, Champomier-Vergès M-C, Cornet M, Crutz-Le Coq A-M, Dudez A-M, Martin V, Beaufils S, Darbon-Rongère E, Bossy R, Loux V (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23(12):1527–1533

    Article  CAS  Google Scholar 

  37. Koort J, Vandamme P, Schillinger U, Holzapfel W, Björkroth J (2004) Lactobacillus curvatus subsp. melibiosus is a later synonym of Lactobacillus sakei subsp. carnosus. Int J Syst Evol Microbiol 54(5):1621–1626

    Article  CAS  Google Scholar 

  38. Papamanoli E, Tzanetakis N, Litopoulou-Tzanetaki E, Kotzekidou P (2003) Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Sci 65(2):859–867

    Article  CAS  Google Scholar 

  39. Franz CM, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods-a conundrum for food safety. Int J Food Microbiol 88(2):105–122

    Article  CAS  Google Scholar 

  40. Todorov SD, Favaro L, Gibbs P, Vaz-Velho M (2012) Enterococcus faecium isolated from Lombo, a Portuguese traditional meat product: characterisation of antibacterial compounds and factors affecting bacteriocin production. Benefic Microbes 3(4):319–330

    Article  CAS  Google Scholar 

  41. Leroy F, Verluyten J, De Vuyst L (2006) Functional meat starter cultures for improved sausage fermentation. Int J Food Microbiol 106(3):270–285

    Article  Google Scholar 

  42. Andrade MJ, Córdoba JJ, Casado EM, Córdoba MG, Rodríguez M (2010) Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci 85(2):256–264

    Article  CAS  Google Scholar 

  43. Cano-García L, Flores M, Belloch C (2013) Molecular characterization and aromatic potential of Debaryomyces hansenii strains isolated from naturally fermented sausages. Food Res Int 52(1):42–49

    Article  CAS  Google Scholar 

  44. Rodriguez J, Cintas L, Casaus P, Horn N, Dodd H, Hernandez P, Gasson M (1995) Isolation of nisin-producing Lactococcus lactis strains from dry fermented sausages. J Appl Bacteriol 78(2):109–115

    Article  CAS  Google Scholar 

  45. Noonpakdee W, Santivarangkna C, Jumriangrit P, Sonomoto K, Panyim S (2003) Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. Int J Food Microbiol 81(2):137–145

    Article  CAS  Google Scholar 

  46. Biscola V, Todorov SD, Capuano V, Abriouel H, Gálvez A, Franco BDGM (2013) Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Sci 93(3):607–613

    Article  CAS  Google Scholar 

  47. Sobrino OJ, Rodríguez JM, Moreira WL, Cintas LM, Fernández MF, Sanz B, Hernández PE (1992) Sakacin M, a bacteriocin-like substance from Lactobacillus sake 148. Int J Food Microbiol 16(3):215–225

    Article  CAS  Google Scholar 

  48. Nes IF, Mørtvedt CI, Nissen-Meyer J, Skaugen M (1994) Lactocin S, a lanthionine-containing bacteriocin isolated from Lactobacillus sake L45. In: Vuyst LD, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Springer, Heidelberg, pp 435–449

    Chapter  Google Scholar 

  49. Aymerich M, Garriga M, Monfort J, Nes I, Hugas M (2000) Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: characterization of bacteriocins. Food Microbiol 17(1):33–45

    Article  CAS  Google Scholar 

  50. Amadoro C, Rossi F, Piccirilli M, Colavita G (2015) Features of Lactobacillus sakei isolated from Italian sausages: focus on strains from Ventricina del Vastese. Italian J Food Safety 4(4):5449

  51. Todorov SD, Vaz-Velho M, Franco BDGM, Holzapfel WH (2013) Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from north-west of Portugal. Food Control 30(1):111–121

    Article  CAS  Google Scholar 

  52. Lewus CB, Kaiser A, Montville TJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl Environ Microbiol 57(6):1683–1688

    CAS  Google Scholar 

  53. Benoit V, Mathis R, Lefebvre G (1994) Characterization of brevicin 27, a bacteriocin synthetized byLactobacillus brevis SB27. Curr Microbiol 28(1):53–61

    Article  CAS  Google Scholar 

  54. Vignolo GM, Suriani F, APdR H, Oliver G (1993) Antibacterial activity of Lactobacillus strains isolated from dry fermented sausages. J Appl Bacteriol 75(4):344–349

    Article  CAS  Google Scholar 

  55. Xiraphi N, Georgalaki M, Van Driessche G, Devreese B, Van Beeumen J, Tsakalidou E, Metaxopoulos J, Drosinos EH (2006) Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. Antonie Van Leeuwenhoek 89(1):19–26

    Article  CAS  Google Scholar 

  56. Casaburi A, Di Martino V, Ferranti P, Picariello L, Villani F (2016) Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control 59:31–45

    Article  CAS  Google Scholar 

  57. Rattanachaikunsopon P, Phumkhachorn P (2006) Isolation and preliminary characterization of a bacteriocin produced by Lactobacillus plantarum N014 isolated from nham, a traditional Thai fermented pork. J Food Prot 69(8):1937–1943

    Article  CAS  Google Scholar 

  58. Xiraphi N, Georgalaki M, Rantsiou K, Cocolin L, Tsakalidou E, Drosinos E (2008) Purification and characterization of a bacteriocin produced by Leuconostoc mesenteroides E131. Meat Sci 80(2):194–203

    Article  CAS  Google Scholar 

  59. Wan X, Saris PE, Takala TM (2015) Genetic characterization and expression of leucocin B, a class IId bacteriocin from Leuconostoc carnosum 4010. Res Microbiol 166(6):494–503

    Article  CAS  Google Scholar 

  60. Cintas LM, Rodriguez JM, Fernandez MF, Sletten K, Nes IF, Hernandez PE, Holo H (1995) Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61(7):2643–2648

    CAS  Google Scholar 

  61. Castellano P, Belfiore C, Fadda S, Vignolo G (2008) A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Sci 79(3):483–499

    Article  CAS  Google Scholar 

  62. Quadri L, Sailer M, Roy KL, Vederas JC, Stiles ME (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem 269(16):12204–12211

    CAS  Google Scholar 

  63. Cintas LM, Casaus P, Håvarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63(11):4321–4330

    CAS  Google Scholar 

  64. Sabia C, Manicardi G, Messi P, De Niederhäusern S, Bondi M (2002) Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. Int J Food Microbiol 75(1):163–170

    Article  CAS  Google Scholar 

  65. Sparo M, Nuñez G, Castro M, Calcagno M, Allende MG, Ceci M, Najle R, Manghi M (2008) Characteristics of an environmental strain, Enterococcus faecalis CECT7121, and its effects as additive on craft dry-fermented sausages. Food Microbiol 25(4):607–615

    Article  CAS  Google Scholar 

  66. Castellano P, Vignolo G (2006) Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Lett Appl Microbiol 43(2):194–199

    Article  CAS  Google Scholar 

  67. Aymerich T, Artigas M, Garriga M, Monfort J, Hugas M (2000) Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J Appl Microbiol 88(4):686–694

    Article  CAS  Google Scholar 

  68. Alahakoon AU, Jayasena DD, Ramachandra S, Jo C (2015) Alternatives to nitrite in processed meat: up to date. Trends Food Sci Technol 45(1):37–49

    Article  CAS  Google Scholar 

  69. Jayasena DD, Jo C (2013) Essential oils as potential antimicrobial agents in meat and meat products: a review. Trends Food Sci Technol 34(2):96–108

    Article  CAS  Google Scholar 

  70. Chen C-M, Sebranek J, Dickson J, Mendonca A (2004) Combining pediocin (ALTA 2341) with postpackaging thermal pasteurization for control of Listeria monocytogenes on frankfurters. J Food Prot 67(9):1855–1865

    Article  CAS  Google Scholar 

  71. O’Connor E, Roos R, Hill C (2007) Application of bacteriocins in food industry. Norfolk: Bacteriocins current research and applications:153–176

  72. Pawar D, Malik S, Bhilegaonkar K, Barbuddhe S (2000) Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Sci 56(3):215–219

    Article  CAS  Google Scholar 

  73. Reunanen J, Saris P (2004) Bioassay for nisin in sausage; a shelf life study of nisin in cooked sausage. Meat Sci 66(3):515–518

    Article  CAS  Google Scholar 

  74. Paik H-D, Kim H-J, Nam K-J, Kim C-J, Lee S-E, Lee D-S (2006) Effect of nisin on the storage of sous vide processed Korean seasoned beef. Food Control 17(12):994–1000

    Article  CAS  Google Scholar 

  75. Karina P, Julio C, Leda G, Noemi Z (2011) Behavior of Listeria monocytogenes type1 355/98 (85) in meat emulsions as affected by temperature, pH, water activity, fat and microbial preservatives. Food Control 22(10):1573–1581

    Article  CAS  Google Scholar 

  76. Mohamed HM, Elnawawi FA, Yousef AE (2011) Nisin treatment to enhance the efficacy of gamma radiation against Listeria monocytogenes on meat. J Food Prot 74(2):193–199

    Article  Google Scholar 

  77. Kalschne DL, Geitenes S, Veit MR, Sarmento CM, Colla E (2014) Growth inhibition of lactic acid bacteria in ham by nisin: a model approach. Meat Sci 98(4):744–752

    Article  CAS  Google Scholar 

  78. Tu L, Mustapha A (2002) Reduction of Brochothrix thermosphacta and Salmonella serotype Typhimurium on vacuum-packaged fresh beef treated with nisin and nisin combined with EDTA. J Food Sci 67(1):302–306

    Article  CAS  Google Scholar 

  79. Wijnker J, Weerts E, Breukink E, Houben J, Lipman L (2011) Reduction of Clostridium sporogenes spore outgrowth in natural sausage casings using nisin. Food Microbiol 28(5):974–979

    Article  CAS  Google Scholar 

  80. Ghabraie M, Vu KD, Tnani S, Lacroix M (2016) Antibacterial effects of 16 formulations and irradiation against Clostridium sporogenes in a sausage model. Food Control 63:21–27

    Article  CAS  Google Scholar 

  81. Khan A, Gallah H, Riedl B, Bouchard J, Safrany A, Lacroix M (2016) Genipin cross-linked antimicrobial nanocomposite films and gamma irradiation to prevent the surface growth of bacteria in fresh meats. Innovative Food Sci Emerg Technol 35:96–102

    Article  CAS  Google Scholar 

  82. Pattanayaiying R, Aran H, Cutter CN (2015) Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods. Int J Food Microbiol 207:77–82

    Article  CAS  Google Scholar 

  83. Rose N, Sporns P, Stiles M, McMullen L (1999) Inactivation of nisin by glutathione in fresh meat. J Food Sci 64(5):759–762

    Article  CAS  Google Scholar 

  84. Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16(9):1058–1071

    Article  CAS  Google Scholar 

  85. Davies EA, Milne CF, Bevis HE, Potter RW, Harris JM, Williams GC, Thomas LV, Delves-Broughton J (1999) Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed bologna-type sausage. J Food Prot 62(9):1004–1010

    Article  CAS  Google Scholar 

  86. Ravyts F, Barbuti S, Frustoli MA, Parolari G, Saccani G, De Vuyst L, Leroy F (2008) Competitiveness and antibacterial potential of bacteriocin-producing starter cultures in different types of fermented sausages. J Food Prot 71(9):1817–1827

    Article  Google Scholar 

  87. Van Wezemael L, Verbeke W, Kügler JO, Scholderer J (2011) European consumer acceptance of safety—improving interventions in the beef chain. Food Control 22(11):1776–1784

    Article  Google Scholar 

  88. Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120(1):51–70

    Article  CAS  Google Scholar 

  89. Aasen IM, Markussen S, Møretrø T, Katla T, Axelsson L, Naterstad K (2003) Interactions of the bacteriocins sakacin P and nisin with food constituents. Int J Food Microbiol 87(1):35–43

    Article  CAS  Google Scholar 

  90. Dicks LMT, Mellett F, Hoffman L (2004) Use of bacteriocin-producing starter cultures of Lactobacillus plantarum and Lactobacillus curvatus in production of ostrich meat salami. Meat Sci 66(3):703–708

    Article  CAS  Google Scholar 

  91. Todorov SD, Koep K, Van Reenen C, Hoffman L, Slinde E, Dicks LMT (2007) Production of salami from beef, horse, mutton, Blesbok (Damaliscus dorcas phillipsi) and Springbok (Antidorcas marsupialis) with bacteriocinogenic strains of Lactobacillus plantarum and Lactobacillus curvatus. Meat Sci 77(3):405–412

    Article  CAS  Google Scholar 

  92. Kingcha Y, Tosukhowong A, Zendo T, Roytrakul S, Luxananil P, Chareonpornsook K, Valyasevi R, Sonomoto K, Visessanguan W (2012) Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control 25(1):190–196

    Article  CAS  Google Scholar 

  93. Budde BB, Hornbæk T, Jacobsen T, Barkholt V, Koch AG (2003) Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. Int J Food Microbiol 83(2):171–184

    Article  Google Scholar 

  94. Castellano P, González C, Carduza F, Vignolo G (2010) Protective action of Lactobacillus curvatus CRL705 on vacuum-packaged raw beef. Effect on sensory and structural characteristics. Meat Sci 85(3):394–401

    Article  CAS  Google Scholar 

  95. Kouakou P, Ghalfi H, Destain J, Duboisdauphin R, Evrard P, Thonart P (2008) Enhancing the antilisterial effect of Lactobacillus curvatus CWBI-B28 in pork meat and cocultures by limiting bacteriocin degradation. Meat Sci 80(3):640–648

    Article  CAS  Google Scholar 

  96. Jacobsen T, Budde B, Koch A (2003) Application of Leuconostoc carnosum for biopreservation of cooked meat products. J Appl Microbiol 95(2):242–249

    Article  CAS  Google Scholar 

  97. Favaro L, Penna ALB, Todorov SD (2015) Bacteriocinogenic LAB from cheeses—application in biopreservation? Trends Food Sci Technol 41(1):37–48

    Article  CAS  Google Scholar 

  98. Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111(2):164–169

    Article  CAS  Google Scholar 

  99. Barbosa MS, Todorov SD, Jurkiewicz CH, Franco BDGM (2015) Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control 47:147–153

    Article  CAS  Google Scholar 

  100. Aymerich T, Garriga M, Ylla J, Vallier J, Monfort J, Hugas M (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products. J Food Prot 63(6):721–726

    Article  CAS  Google Scholar 

  101. Nieto-Lozano JC, Reguera-Useros JI, Peláez-Martínez MC, de la Torre AH (2006) Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat. Meat Sci 72(1):57–61

    Article  CAS  Google Scholar 

  102. Mattila K, Saris P, Työppönen S (2003) Survival of Listeria monocytogenes on sliced cooked sausage after treatment with pediocin AcH. Int J Food Microbiol 89(2):281–286

    Article  CAS  Google Scholar 

  103. Murray M, Richard JA (1997) Comparative study of the antilisterial activity of nisin A and pediocin AcH in fresh ground pork stored aerobically at 5°C. J Food Prot 60(12):1534–1540

    Article  CAS  Google Scholar 

  104. Zhang J, Liu G, Li P, Qu Y (2010) Pentocin 31-1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control 21(2):198–202

    Article  CAS  Google Scholar 

  105. Ananou S, Garriga M, Jofré A, Aymerich T, Gálvez A, Maqueda M, Martínez-Bueno M, Valdivia E (2010) Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Sci 84(4):594–600

    Article  CAS  Google Scholar 

  106. Turgis M, Stotz V, Dupont C, Salmieri S, Khan RA, Lacroix M (2012) Elimination of Listeria monocytogenes in sausage meat by combination treatment: radiation and radiation-resistant bacteriocins. Radiat Phys Chem 81(8):1185–1188

    Article  CAS  Google Scholar 

  107. Rivas FP, Castro MP, Vallejo M, Marguet E, Campos CA (2014) Sakacin Q produced by Lactobacillus curvatus ACU-1: functionality characterization and antilisterial activity on cooked meat surface. Meat Sci 97(4):475–479

    Article  CAS  Google Scholar 

  108. Barbosa M, Todorov SD, Ivanova I, Chobert J-M, Haertlé T, Franco BDGM (2015) Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol 46:254–262

    Article  CAS  Google Scholar 

  109. El-Ziney M, Van Den Tempel T, Debevere J, Jakobsen M (1999) Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J Food Prot 62(3):257–261

    Article  CAS  Google Scholar 

  110. Koo OK, Kim SM, Kang S-H (2015) Antimicrobial potential of Leuconostoc species against E. coli O157: H7 in ground meat. J Korean Soc Appl Biological Chem 58(6):831–838

    Article  CAS  Google Scholar 

  111. Campos C, Castro M, Rivas F, Schelegueda L (2013) Bacteriocins in food: evaluation of the factors affecting their effectiveness. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: sciences, technology and education. Formatex, Badajoz, pp 994–1004

    Google Scholar 

  112. Chung K-T, Dickson JS, Crouse JD (1989) Effects of nisin on growth of bacteria attached to meat. Appl Environ Microbiol 55(6):1329–1333

    CAS  Google Scholar 

  113. Rayman K, Malik N, Hurst A (1983) Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Appl Environ Microbiol 46(6):1450–1452

    CAS  Google Scholar 

  114. Junttila J, Hirn J, Hill P, Nurmi E (1989) Effect of different levels of nitrite and nitrate on the survival of Listeria monocytogenes during the manufacture of fermented sausage. J Food Prot 52(3):158–161

    Article  CAS  Google Scholar 

  115. Chumchalová J, Josephsen J, Plocková M (1998) The antimicrobial activity of acidocin CH5 in MRS broth and milk with added NaCl, NaNO3 and lysozyme. Int J Food Microbiol 43(1):33–38

    Article  Google Scholar 

  116. Nilsen T, Nes IF, Holo H (1998) An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J Bacteriol 180(7):1848–1854

    CAS  Google Scholar 

  117. Schillinger U, Kaya M, Lücke FK (1991) Behaviour of Listeria monocytogenes in meat and its control by a bacteriocin-producing strain of Lactobacillus sake. J Appl Bacteriol 70(6):473–478

    Article  CAS  Google Scholar 

  118. Zhu M, Du M, Cordray J, Ahn DU (2005) Control of Listeria monocytogenes contamination in ready-to-eat meat products. Compr Rev Food Sci Food Saf 4(2):34–42

    Article  Google Scholar 

  119. Schirru S, Favaro L, Mangia NP, Basaglia M, Casella S, Comunian R, Fancello F, Franco BDGM, de Souza Oliveira RP, Todorov SD (2014) Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium. Ann Microbiol 64(1):321–331

    Article  CAS  Google Scholar 

  120. Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 39(1):178–187

    Article  Google Scholar 

  121. Ünlü G, Nielsen B, Ionita C (2015) Production of antilisterial bacteriocins from lactic acid bacteria in dairy-based media: a comparative study. Probiotics Antimicrobial Proteins 7(4):259–274

    Article  CAS  Google Scholar 

  122. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LMT, Franco BDGM, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27(7):869–879

    Article  CAS  Google Scholar 

  123. Jones E, Salin V, Williams GW (2005) Nisin and the market for commercial bacteriocins. Consumer and Product Research CP-01-05, Texas Agribusiness Market Research Center, Texas A&M University, College Station, Tex, USA

  124. Bali V, Panesar PS, Bera MB (2016) Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications. Crit Rev Biotechnol 36(2):204–214

    Article  CAS  Google Scholar 

  125. Romanelli MG, Povolo S, Favaro L, Fontana F, Basaglia M, Casella S (2014) Engineering Delftia acidovorans DSM39 to produce polyhydroxyalkanoates from slaughterhouse waste. Int J Biol Macromol 71:21–27

    Article  CAS  Google Scholar 

  126. Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Garcia IL, Kookos IK, Papanikolaou S, Kwan TH, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43(8):2587–2627

    Article  CAS  Google Scholar 

  127. Cripwell R, Favaro L, Rose SH, Basaglia M, Cagnin L, Casella S, van Zyl W (2015) Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Appl Energy 160:610–617

    Article  CAS  Google Scholar 

  128. Shah A, Favaro L, Alibardi L, Cagnin L, Sandon A, Cossu R, Casella S, Basaglia M (2016) Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste. Appl Energy 176:116–124

    Article  CAS  Google Scholar 

  129. Tsapekos P, Kougias P, Treu L, Campanaro S, Angelidaki I (2017) Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Appl Energy 185:126–135

    Article  CAS  Google Scholar 

  130. Alibardi L, Favaro L, Lavagnolo MC, Basaglia M, Casella S (2012) Effects of heat treatment on microbial communities of granular sludge for biological hydrogen production. Water Sci Technol 66(7):1483–1490

    Article  CAS  Google Scholar 

  131. Alibardi L, Green K, Favaro L, Vale P, Soares A, Cartmell E, Bajon Fernandez Y (2017) Performance and stability of sewage sludge digestion under CO2 enrichment: a pilot study. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.071

  132. Favaro L, Cagnin L, Basaglia M, Pizzocchero V, van Zyl WH, Casella S (2017) Production of bioethanol from multiple waste streams of rice milling. Bioresour Technol 244:151–159

    Article  CAS  Google Scholar 

  133. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28

    Article  CAS  Google Scholar 

  134. O’Shea EF, O’Connor PM, Cotter PD, Ross RP, Hill C (2010) Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. Appl Environ Microbiol 76(16):5356–5362

    Article  CAS  Google Scholar 

  135. Carmona-Ribeiro AM, de Melo Carrasco LD (2014) Novel formulations for antimicrobial peptides. Int J Mol Sci 15(10):18040–18083

    Article  CAS  Google Scholar 

  136. de Abreu LCL, Todaro V, Sathler PC, da Silva LCRP, do Carmo FA, Costa CM, Toma HK, Castro HC, Rodrigues CR, de Sousa VP (2016) Development and characterization of nisin nanoparticles as potential alternative for the recurrent vaginal candidiasis treatment. AAPS PharmSciTech 17(6):1421–1427

    Article  CAS  Google Scholar 

  137. Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, Wachsman MB, Chikindas ML (2013) Safety, formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrobial Proteins 5(1):26–35

    Article  CAS  Google Scholar 

  138. Healy B, Field D, O’Connor PM, Hill C, Cotter PD, Ross RP (2013) Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives. PLoS One 8(11):e79563

    Article  CAS  Google Scholar 

  139. Carroll J, Field D, O'connor PM, Cotter PD, Coffey A, Hill C, O’Mahony J (2010) The gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioengineered Bugs 1(6):408–412

    Article  Google Scholar 

  140. Jozala AF, De Andrade MS, De Arauz LJ, Pessoa A, Penna TCV (2007) Nisin production utilizing skimmed milk aiming to reduce process cost. Appl Biochem Biotechnol 137(1–12):515–528

    Google Scholar 

  141. Vaucher RA, Motta SA, Brandelli A (2010) Evaluation of the in vitro cytotoxicity of the antimicrobial peptide P34. Cell Biol Int 34(3):317–323

    Article  CAS  Google Scholar 

  142. Carneiro B, Braga A, Batista M, Rahal P, Favaro L, Penna A, Todorov S (2014) Lactobacillus plantarum ST202Ch and Lactobacillus plantarum ST216Ch-what are the limitations for application. J Nutritional Health Food Engineering 1(2):00010

    Google Scholar 

  143. Suwandecha T, Srichana T, Balekar N, Nakpheng T, Pangsomboon K (2015) Novel antimicrobial peptide specifically active against Porphyromonas gingivalis. Arch Microbiol 197(7):899–909

    Article  CAS  Google Scholar 

  144. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  Google Scholar 

  145. Das D, Goyal A (2014) Characterization of a noncytotoxic bacteriocin from probiotic Lactobacillus plantarum DM5 with potential as a food preservative. Food Funct 5(10):2453–2462

    Article  CAS  Google Scholar 

  146. Settanni L, Guarcello R, Gaglio R, Francesca N, Aleo A, Felis GE, Moschetti G (2014) Production, stability, gene sequencing and in situ anti-Listeria activity of mundticin KS expressed by three Enterococcus mundtii strains. Food Control 35(1):311–322

    Article  CAS  Google Scholar 

  147. Götz F, Perconti S, Popella P, Werner R, Schlag M (2014) Epidermin and gallidermin: staphylococcal lantibiotics. Int J Med Microbiol 304(1):63–71

    Article  CAS  Google Scholar 

  148. Maher S, McClean S (2006) Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 71(9):1289–1298

    Article  CAS  Google Scholar 

  149. Martinez RCR, Wachsman M, Torres NI, LeBlanc JG, Todorov SD, de Melo Franco BDG (2013) Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiol 34(2):376–381

    Article  CAS  Google Scholar 

  150. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LM (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents 25(6):508–513

    Article  CAS  Google Scholar 

  151. Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155(6):1749–1757

    Article  CAS  Google Scholar 

  152. Rathnayake I, Hargreaves M, Huygens F (2012) Antibiotic resistance and virulence traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. Syst Appl Microbiol 35(5):326–333

    Article  CAS  Google Scholar 

  153. Belgacem ZB, Abriouel H, Omar NB, Lucas R, Martínez-Canamero M, Gálvez A, Manai M (2010) Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control 21(4):462–470

    Article  CAS  Google Scholar 

  154. Hendrickx AP, Willems RJ, Bonten MJ, van Schaik W (2009) LPxTG surface proteins of enterococci. Trends Microbiol 17(9):423–430

    Article  CAS  Google Scholar 

  155. Todorov S, Franco B, Wiid I (2014) In vitro study of beneficial properties and safety of lactic acid bacteria isolated from Portuguese fermented meat products. Benefic Microbes 5(3):351–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Favaro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favaro, L., Todorov, S.D. Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations. Probiotics & Antimicro. Prot. 9, 444–458 (2017). https://doi.org/10.1007/s12602-017-9330-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9330-6

Keywords

Navigation