Skip to main content
Log in

Beyond Conventional Meat Preservation: Saddling the Control of Bacteriocin and Lactic Acid Bacteria for Clean Label and Functional Meat Products

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Advancements in food science and technology have paved the way for the development of natural antimicrobial compounds to ensure the safety and quality of meat and meat products. Among these compounds, bacteriocin produced by lactic acid bacteria has gained considerable scientific attention for its ability to preserve the healthy properties of meat while preventing spoilage. This natural preservative is seen as a pioneering tool and a potent alternative to chemical preservatives and heat treatment, which can have harmful effects on the nutritional and sensory qualities of meat. Bacteriocin produced by lactic acid bacteria can be used in various forms, including as starter/protective cultures for fermented meats, purified or partially purified forms, loaded in active films/coatings, or established in encapsulate systems. This review delves into the downstream purification schemes of LAB bacteriocin, the elucidation of their characteristics, and their modes of action. Additionally, the application of LAB bacteriocins in meat and meat products is examined in detail. Overall, the use of LAB bacteriocins holds immense potential to inspire innovation in the meat industry, reducing the dependence on harmful chemical additives and minimizing the adverse effects of heat treatment on nutritional and sensory qualities. This review provides a comprehensive understanding of the potential of bacteriocin produced by lactic acid bacteria as a natural and effective meat preservative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

FAO:

Organization of the United Nations

LAB:

Lactic acid bacteria

GRAS:

Generally recognized as safe

Lan:

Lanthionine

MeLan:

β methyl lanthionine

Dha:

β unsaturated amino acids 2,3 didehydroalanine

Dhb:

2,3-didehydrobutyrine

RiPPs:

Ribosomally synthesized and post-translationally modified peptides

Ia:

lanthipeptides

Ib:

Head to tail cyclized peptides

LAP (Ic):

Linear azol(in)e containing peptides

Id:

Sactipeptides

Ie:

glycocins

If:

lasso peptides

man PTS:

Mannose phosphotransferase system

PPi:

Pyrophosphate

ATP:

Adenosine triphosphate

BLIS:

Bacteriocin-like inhibitory substance

WFH:

Wheat flour hydrolysate

MRS:

de Mann, Rogosa and Sharpe

PFM:

Proton motive force

UppP:

Undecaprenyl pyrophosphate phosphatase

HTP:

Huge toroidal pore

IEC:

Ion exchange chromatography

SEC:

Size exclusion chromatography

HIC:

Hydrophobic interaction chromatography

HPLC:

High-performance liquid chromatography

ATPS:

Aqueous two phase system

PEG:

Polyethylene glycol

MIC:

Minimum inhibitory concentration

PVDC:

Polyvinylidene chloride

LDPE:

Low density polyethylene

HDPE:

High density polyethylene

HPMC:

Hydroxypropyl methylcellulose

ACS:

Antimicrobial concentrated supernatant

CNFs:

Cellulose nanofibrils

PCL:

Poly(ε-caprolactone)

TBARS:

Thiobarbituric Acid Reactive Species

EDTA:

Ethylenediaminetetraacetic acid

PBAT/TPS:

Poly(butylene adipate terephthalate

HPP:

High Pressure Processing

LAE:

Lauric arginate

NCL:

Curcumin nanomats

TMAB:

Total mesophilic aerobic

ALG-GEL:

Alginate-gelatin

RTE:

Ready-to-Eat

PE:

Polyethylene

PP:

Polypropylene

MTGase:

Transglutaminase

References

  1. Estévez-Moreno, L. X., & Lama, M. L. (2022). Meat consumption and consumer attitudes in México: Can persistence lead to change? Meat Science, 193, 108943. https://doi.org/10.1016/j.meatsci.2022.108943

    Article  PubMed  Google Scholar 

  2. FAO (2022). World Food and Agriculture – Statistical Yearbook 2022. FAO. https://doi.org/10.4060/cc2211en

  3. The State of Food Security and Nutrition in the World 2022. (2022). FAO. https://doi.org/10.4060/cc0639en

  4. Lianou, A., Panagou, E. Z., & Nychas, G. J. E. (2017). Meat Safety—I foodborne pathogens and other biological issues. Lawrie´s Meat Science, 521–552. https://doi.org/10.1016/B978-0-08-100694-8.00017-0

  5. Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine, 2020, 1–19. https://doi.org/10.1155/2020/4674235

  6. Ben Braïek, O., & Smaoui, S. (2021). Chemistry, safety, and challenges of the use of organic acids and their derivative salts in meat preservation. Journal of Food Quality, 2021, 1–20. https://doi.org/10.1155/2021/6653190

  7. Gómez, I., Janardhanan, R., Ibañez, F. C., & Beriain, M. J. (2020). The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods, 9(10), 1416. https://doi.org/10.3390/foods9101416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iulietto, M. F., Sechi, P., Borgogni, E., & Cenci-Goga, B. T. (2015). Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Italian Journal of Animal Science, 14(3), 4011. https://doi.org/10.4081/ijas.2015.4011

    Article  Google Scholar 

  9. Scientific opinion. EFSA journal. Retrieved February 4, 2023, from https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2023.7745

  10. Katiyo, W., De Kock, H. L., Coorey, R., & Buys, E. M. (2020). Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT, 128, 109468. https://doi.org/10.1016/j.lwt.2020.109468

    Article  CAS  Google Scholar 

  11. Sofos, J. N. (2008). Challenges to meat safety in the 21st century. Meat Science, 78(1), 3–13. https://doi.org/10.1016/j.meatsci.2007.07.027

    Article  PubMed  Google Scholar 

  12. D’Amore, T., Di Taranto, A., Berardi, G., Vita, V., Marchesani, G., Chiaravalle, A. E., & Iammarino, M. (2020). Sulfites in meat: Occurrence, activity, toxicity, regulation, and detection. A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2701–2720. https://doi.org/10.1111/1541-4337.12607

    Article  PubMed  Google Scholar 

  13. Farvid, M. S., Sidahmed, E., Spence, N. D., Angua, M., Rosner, K., & Barnett, J. B. (2021). Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. European Journal of Epidemiology, 36(9), 937–951. https://doi.org/10.1007/s10654-021-00741-9

    Article  PubMed  Google Scholar 

  14. Moradi, S., Shariatifar, N., Akbari-adergani, B., Aghaee, M., & Arbameri, M. (2021). Analysis and health risk assessment of nitrosamines in meat products collected from markets, Iran: With the approach of chemometric. Journal of Environmental Health Science and Engineering, 19(2), 1361–1371. https://doi.org/10.1007/s40201-021-00692-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niklas, A. A., Herrmann, S. S., Pedersen, M., Jakobsen, M., & Duedahl-Olesen, L. (2022). The occurrence of volatile and non-volatile N-nitrosamines in cured meat products from the danish market. Food Chemistry, 378, 132046. https://doi.org/10.1016/j.foodchem.2022.132046

    Article  CAS  PubMed  Google Scholar 

  16. D’Amore, T., Taranto, A. D., Berardi, G., Vita, V., & Iammarino, M. (2022). Nitrate as food additives: Reactivity, occurrence, and regulation. Nitrate handbook. CRC Press.

  17. Domínguez, R., Munekata, P. E. S., Pateiro, M., Maggiolino, A., Bohrer, B., & Lorenzo, J. M. (2020). Red Beetroot. A potential source of natural additives for the meat industry. Applied Sciences, 10(23), 8340. https://doi.org/10.3390/app10238340

    Article  CAS  Google Scholar 

  18. Sharma, S., Barkauskaite, S., Jaiswal, A. K., & Jaiswal, S. (2021). Essential oils as additives in active food packaging. Food Chemistry, 343, 128403. https://doi.org/10.1016/j.foodchem.2020.128403

    Article  CAS  PubMed  Google Scholar 

  19. Thangavelu, K. P., Kerry, J. P., Tiwari, B. K., & McDonnell, C. K. (2019). Novel processing technologies and ingredient strategies for the reduction of phosphate additives in processed meat. Trends in Food Science & Technology, 94, 43–53. https://doi.org/10.1016/j.tifs.2019.10.001

    Article  CAS  Google Scholar 

  20. da Costa, R. J., Voloski, F. L. S., Mondadori, R. G., Duval, E. H., & Fiorentini, Â. M. (2019). Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality, 2019, 1–12. https://doi.org/10.1155/2019/4726510

  21. Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11(4), 979. https://doi.org/10.3390/ani11040979

    Article  PubMed  PubMed Central  Google Scholar 

  22. Merenkova, S., Zinina, O., Lykasova, I., Kuznetsov, A., & Shnyakina, T. (2021). Effect of microbial enzymes on the changes in the composition and microstructure of hydrolysates from poultry by-products. Fermentation, 7(3), 190. https://doi.org/10.3390/fermentation7030190

    Article  CAS  Google Scholar 

  23. Zinina, O., Merenkova, S., Soloveva, A., Savostina, T., Sayfulmulyukov, E., Lykasova, I., & Mizhevikina, A. (2018). The effect of starter cultures on the qualitative indicators of dry fermented sausages made from poultry meat, 942.6Kb. https://doi.org/10.15159/AR.18.199

  24. Matsubara, V. H., Wang, Y., Bandara, H. M. H. N., Mayer, M. P. A., & Samaranayake, L. P. (2016). Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Applied Microbiology and Biotechnology, 100(14), 6415–6426. https://doi.org/10.1007/s00253-016-7527-3

    Article  CAS  PubMed  Google Scholar 

  25. Daliri, F., Aboagye, A. A., & Daliri, E. B. M. (2020). Inactivation of foodborne pathogens by lactic acid bacteria. Journal of Food Hygiene and Safety, 35(5), 419–429. https://doi.org/10.13103/JFHS.2020.35.5.419

    Article  Google Scholar 

  26. Choi, H. S., Kim, J., Kim, S., Deng, H., Lee, D., Kim, C. S., … Lee, D. (2018). Catechol derived from Aronia juice through lactic acid bacteria fermentation inhibits breast cancer stem cell formation via modulation Stat3/IL‐6 signaling pathway. Molecular Carcinogenesis, 57(11), 1467–1479. https://doi.org/10.1002/mc.22870

  27. Zapaśnik, A., Sokołowska, B., & Bryła, M. (2022). Role of lactic acid bacteria in food preservation and safety. Foods, 11(9), 1283. https://doi.org/10.3390/foods11091283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zinina, O., Rebezov, M., Khayrullin, M., Neverova, O., & Bychkova, T. (2020). Functional and technological indicators of fermented minced meat. IOP Conference Series: Earth and Environmental Science, 548(8), 082010. https://doi.org/10.1088/1755-1315/548/8/082010

  29. Barcenilla, C., Ducic, M., López, M., Prieto, M., & Álvarez-Ordóñez, A. (2022). Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Science, 183, 108661. https://doi.org/10.1016/j.meatsci.2021.108661

    Article  CAS  PubMed  Google Scholar 

  30. Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 1255. https://doi.org/10.3390/molecules22081255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smaoui, S., Agriopoulou, S., D’Amore, T., Tavares, L., & Mousavi Khaneghah, A. (2022). The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 0(0), 1–28. https://doi.org/10.1080/10408398.2022.2087594

    Article  CAS  Google Scholar 

  32. Bangar, S. P., Sharma, N., Bhardwaj, A., & Phimolsiripol, Y. (2022). Lactic acid bacteria: a bio-green preservative against mycotoxins for food safety and shelf-life extension. Quality Assurance and Safety of Crops & Foods, 14(2), 13–31. https://doi.org/10.15586/qas.v14i2.1014

  33. Zinina, O., Merenkova, S., Rebezov, M., Galimov, D., Khayrullin, M., & Burkov, P. (2022). Physicochemical, functional, and technological properties of protein hydrolysates obtained by microbial fermentation of broiler chicken gizzards. Fermentation, 8(7), 317. https://doi.org/10.3390/fermentation8070317

    Article  CAS  Google Scholar 

  34. Timothy, B., Iliyasu, A. H., & Anvikar, A. R. (2021). Bacteriocins of lactic acid bacteria and their industrial application. Current Topics in Lactic Acid Bacteria and Probiotics, 7(1), 1–13. https://doi.org/10.35732/ctlabp.2021.7.1.1

    Article  Google Scholar 

  35. Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100(7), 2939–2951. https://doi.org/10.1007/s00253-016-7343-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klaenhammer, T. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12(1–3), 39–85. https://doi.org/10.1016/0168-6445(93)90057-G

    Article  CAS  PubMed  Google Scholar 

  37. Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171–177. https://doi.org/10.1016/j.micpath.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, 1–7. https://doi.org/10.1155/2020/4374891

  39. Huang, Y., Yu, J., Yan, H., Zhang, C., Kang, W., Pan, L., Wang, J., Dai, Z., & Gu, R. (2022). Screening of Lactobacillus from breast milk and infant feces and evaluation of their bile salt tolerance. Quality Assurance and Safety of Crops & Foods, 14(4), 115–124

  40. Meade, S., & Garvey. (2020). Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hernández-Aquino, S., Miranda-Romero, L. A., Fujikawa, H., Maldonado-Simán, E. D. J., & Alarcón-Zuñiga, B. (2019). Antibacterial activity of lactic acid Bacteria to improve Shelf Life of raw meat. Biocontrol Science, 24(4), 185–192. https://doi.org/10.4265/bio.24.185

    Article  PubMed  Google Scholar 

  42. Lee, H., & Kim, H. Y. (2011). Lantibiotics, class i bacteriocins from the genus Bacillus. Journal of Microbiology and Biotechnology, 21(3), 229–235. https://doi.org/10.4014/jmb.1010.10017

    Article  CAS  PubMed  Google Scholar 

  43. Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 9(9), 553. https://doi.org/10.3390/antibiotics9090553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., … Shen, J. (2016). Emergence of plasmid-mediated Colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

  45. Masdea, L., Kulik, E., Hauser-Gerspach, I., Ramseier, A., Filippi, A., & Waltimo, T. (2012). Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour. Archives of Oral Biology, 57, 1041–1047. https://doi.org/10.1016/j.archoralbio.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  46. Mouloud, G., Daoud, H., Bassem, J., Laribi Atef, I., & Hani, B. (2013). New bacteriocin from Bacillus clausii StrainGM17: Purification, characterization, and biological activity. Applied Biochemistry and Biotechnology, 171(8), 2186–2200. https://doi.org/10.1007/s12010-013-0489-3

    Article  CAS  PubMed  Google Scholar 

  47. Pérez-Ramos, A., Madi-Moussa, D., Coucheney, F., & Drider, D. (2021). Current knowledge of the mode of action and immunity mechanisms of LAB-Bacteriocins. Microorganisms, 9(10), 2107. https://doi.org/10.3390/microorganisms9102107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhattacharya, D., Nanda, P. K., Pateiro, M., Lorenzo, J. M., Dhar, P., & Das, A. K. (2022). Lactic acid bacteria and bacteriocins: Novel biotechnological approach for biopreservation of meat and meat products. Microorganisms, 10(10), 2058. https://doi.org/10.3390/microorganisms10102058

  49. Simons, A., Alhanout, K., & Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), 639. https://doi.org/10.3390/microorganisms8050639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777–788. https://doi.org/10.1038/nrmicro1273

    Article  CAS  PubMed  Google Scholar 

  51. Favaro, L., & Todorov, S. D. (2017). Bacteriocinogenic LAB strains for fermented meat preservation: Perspectives, challenges, and limitations. Probiotics and Antimicrobial Proteins, 9(4), 444–458. https://doi.org/10.1007/s12602-017-9330-6

    Article  CAS  PubMed  Google Scholar 

  52. Perez, R., Perez, M. T., & Elegado, F. (2015). Bacteriocins from lactic acid bacteria: A review of biosynthesis, mode of action, fermentative production, uses, and prospects. International Journal of Philippine Science and Technology, 8(2), 61–67. https://doi.org/10.18191/2015-08-2-027

    Article  Google Scholar 

  53. Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13(S1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lahiri, D., Nag, M., Sarkar, T., Ray, R. R., Shariati, M. A., Rebezov, M., … Domínguez, R. (2022). Lactic Acid Bacteria (LAB): Autochthonous and probiotic microbes for meat preservation and fortification. Foods, 11(18), 2792. https://doi.org/10.3390/foods11182792

  55. Mercado, V., & Olmos, J. (2022). Bacteriocin production by Bacillus species: Isolation, characterization, and application. Probiotics and Antimicrobial Proteins, 14(6), 1151–1169. https://doi.org/10.1007/s12602-022-09966-w

    Article  CAS  PubMed  Google Scholar 

  56. Sharma, B. R., Halami, P. M., & Tamang, J. P. (2022). Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Science and Biotechnology, 31(1), 1–16. https://doi.org/10.1007/s10068-021-00986-w

    Article  CAS  PubMed  Google Scholar 

  57. Wang, J., Zhang, S., Ouyang, Y., & Li, R. (2019). Current developments of bacteriocins, screening methods and their application in aquaculture and aquatic products. Biocatalysis and Agricultural Biotechnology, 22, 101395. https://doi.org/10.1016/j.bcab.2019.101395

    Article  Google Scholar 

  58. Fernandes, A., & Jobby, R. (2022). Bacteriocins from lactic acid bacteria and their potential clinical applications. Applied Biochemistry and Biotechnology, 194(10), 4377–4399. https://doi.org/10.1007/s12010-022-03870-3

  59. de Souza de Azevedo, P. O., Mendonça, C. M. N., Moreno, A. C. R., Bueno, A. V. I., de Almeida, S. R. Y., Seibert, L., … de Souza Oliveira, R. P. (2020). Antibacterial and antifungal activity of crude and freeze-dried bacteriocin-like inhibitory substance produced by Pediococcus pentosaceus. Scientific Reports, 10(1), 12291. https://doi.org/10.1038/s41598-020-68922-2

  60. Dehghanifar, S., Keyhanfar, M., & Emtiazi, G. (2019). Production and partial purification of thermostable bacteriocins from Bacillus pumilus ZED17 and DFAR8 strains with antifungal activity. Molecular Biology Research Communications, 8(1), 41–49. https://doi.org/10.22099/mbrc.2019.31563.1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shayesteh, F., Ahmad, A., & Usup, G. (2021). Purification and partial characterisation of an antifungal bacteriocin from Bacillus sp. Sh10 associated with marine carpet clam (paphia textile). Journal of microbiology biotechnology and food sciences, 10(6), e2513. https://doi.org/10.15414/jmbfs.2513

    Article  CAS  Google Scholar 

  62. Shehata, M. G., Badr, A. N., Sohaimy, E., Asker, S. A., & Awad, T. S. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64(1), 71–78. https://doi.org/10.1016/j.aoas.2019.05.002

    Article  Google Scholar 

  63. Valerio, F., Di Biase, M., Lattanzio, V. M. T., & Lavermicocca, P. (2016). Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. International Journal of Food Microbiology, 222, 1–7. https://doi.org/10.1016/j.ijfoodmicro.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  64. Ansari, A., Ibrahim, F., Haider, M. S., & Aman, A. (2022). In vitro application of bacteriocin produced by lactiplantibacillus plantarum for the biopreservation of meat at refrigeration temperature. Journal of Food Processing and Preservation, 46(1), e16159. https://doi.org/10.1111/jfpp.16159

    Article  CAS  Google Scholar 

  65. Huda, M., Selman, A. A., Mahdi, Nagat, A., El Rofaei, & Elnasri, M. M. (2021). Antibacterial activity of the bacteriocins producing- lactic acid bacteria isolated from some processed meat products against selected indicator bacterial strains. World Journal of Advanced Research and Reviews, 12(2), 640–645. https://doi.org/10.30574/wjarr.2021.12.2.0643

    Article  CAS  Google Scholar 

  66. Yan, H., Aizhan, R., Lu, Y. y., Li, X., Wang, X., Yi, Y. l., … Lü, X. (2021). A novel bacteriocin BM1029: physicochemical characterization, antibacterial modes and application. Journal of Applied Microbiology, 130(3), 755–768. https://doi.org/10.1111/jam.14809

  67. Cavicchioli, V. Q., Camargo, A. C., Todorov, S. D., & Nero, L. A. (2017). Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with antilisterial activity isolated from brazilian artisanal cheese. Journal of Dairy Science, 100(4), 2526–2535. https://doi.org/10.3168/jds.2016-12049

    Article  CAS  PubMed  Google Scholar 

  68. Alizadeh, A. M., Hashempour-Baltork, F., Alizadeh-Sani, M., Maleki, M., Azizi-Lalabadi, M., & Khosravi-Darani, K. (2020). Inhibition of Clostridium botulinum and its toxins by probiotic bacteria and their metabolites: An update review. Quality Assurance and Safety of Crops & Foods, 12(SP1), 59–68. https://doi.org/10.15586/qas.v12iSP1.823

  69. Liu, G., Ren, L., Song, Z., Wang, C., & Sun, B. (2015). Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians’ intestine. Food Control, 50, 889–895. https://doi.org/10.1016/j.foodcont.2014.10.049

    Article  CAS  Google Scholar 

  70. Chernyshova, D. N., Tyulin, A. A., Ostroumova, O. S., & Efimova, S. S. (2022). Discovery of the Potentiator of the pore-forming ability of Lantibiotic Nisin: Perspectives for anticancer therapy. Membranes, 12(11), 1166. https://doi.org/10.3390/membranes12111166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grant-Mackie, E. S., Williams, E. T., Harris, P. W. R., & Brimble, M. A. (2021). Aminovinyl cysteine containing peptides: A unique motif that imparts key biological activity. JACS Au, 1(10), 1527–1540. https://doi.org/10.1021/jacsau.1c00308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, X., Yin, Z., Breukink, E., Moll, G. N., & Kuipers, O. P. (2020). An Engineered double lipid II binding motifs-containing lantibiotic displays potent and selective antimicrobial activity against Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 64(6), e02050–e02019. https://doi.org/10.1128/AAC.02050-19

    Article  PubMed  PubMed Central  Google Scholar 

  73. Le, M. N. T., Kawada-Matsuo, M., & Komatsuzawa, H. (2022). Gene rearrangement and modification of immunity factors are correlated with the insertion of Bacteriocin Cassettes in Streptococcus mutans. Microbiology Spectrum, 10(3), e01806–e01821. https://doi.org/10.1128/spectrum.01806-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cavera, V. L., Arthur, T. D., Kashtanov, D., & Chikindas, M. L. (2015). Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents, 46(5), 494–501. https://doi.org/10.1016/j.ijantimicag.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  75. Sulthana, R., & Archer, A. (2021). Bacteriocin nanoconjugates: Boon to medical and food industry. Journal of Applied Microbiology, 131(3), 1056–1071. https://doi.org/10.1111/jam.14982

    Article  CAS  PubMed  Google Scholar 

  76. Dickman, R., Mitchell, S. A., Figueiredo, A. M., Hansen, D. F., & Tabor, A. B. (2019). Molecular recognition of lipid II by Lantibiotics: Synthesis and conformational studies of analogues of Nisin and Mutacin Rings A and B. The Journal of Organic Chemistry, 84(18), 11493–11512. https://doi.org/10.1021/acs.joc.9b01253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parisot, J., Carey, S., Breukink, E., Chan, W. C., Narbad, A., & Bonev, B. (2008). Molecular mechanism of target recognition by Subtilin, a class I lanthionine antibiotic. Antimicrobial Agents and Chemotherapy, 52(2), 612–618. https://doi.org/10.1128/AAC.00836-07

    Article  CAS  PubMed  Google Scholar 

  78. Hsu, S. T., Breukink, E., de Kruijff, B., Kaptein, R., Bonvin, A. M. J. J., & van Nuland, N. A. J. (2002). Mapping the targeted membrane pore formation mechanism by solution NMR: The Nisin Z and lipid II Interaction in SDS micelles. Biochemistry, 41(24), 7670–7676. https://doi.org/10.1021/bi025679t

    Article  CAS  PubMed  Google Scholar 

  79. Panina, I., Krylov, N., Nolde, D., Efremov, R., & Chugunov, A. (2020). Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Scientific Reports, 10(1), 8821. https://doi.org/10.1038/s41598-020-65522-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prince, A., Sandhu, P., Ror, P., Dash, E., Sharma, S., Arakha, M., … Saleem, M. (2016). Lipid-II Independent Antimicrobial Mechanism of Nisin Depends On Its Crowding And Degree Of Oligomerization. Scientific Reports, 6(1), 37908. https://doi.org/10.1038/srep37908

  81. Jeckelmann, J. M., & Erni, B. (2020). The mannose phosphotransferase system (Man-PTS) - mannose transporter and receptor for bacteriocins and bacteriophages. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862(11), 183412. https://doi.org/10.1016/j.bbamem.2020.183412

    Article  CAS  PubMed  Google Scholar 

  82. Yi, Y., Li, P., Zhao, F., Zhang, T., Shan, Y., Wang, X., … Lü, X. (2022). Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends in Food Science & Technology, 120, 387–401. https://doi.org/10.1016/j.tifs.2022.01.018

  83. Tymoszewska, A., Diep, D. B., Wirtek, P., & Aleksandrzak-Piekarczyk, T. (2017). The non-lantibiotic bacteriocin garvicin Q targets Man-PTS in a broad spectrum of sensitive bacterial genera. Scientific Reports, 7(1), 8359. https://doi.org/10.1038/s41598-017-09102-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu, L., Zeng, J., Wang, C., & Wang, J. (2022). Structural basis of pore formation in the Mannose Phosphotransferase System by Pediocin PA-1. Applied and Environmental Microbiology, 88(3), e01992–e01921. https://doi.org/10.1128/AEM.01992-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoneyama, F., Imura, Y., Ohno, K., Zendo, T., Nakayama, J., Matsuzaki, K., & Sonomoto, K. (2009). Peptide-lipid huge Toroidal Pore, a new antimicrobial mechanism mediated by a Lactococcal Bacteriocin, Lacticin Q. Antimicrobial Agents and Chemotherapy, 53(8), 3211–3217. https://doi.org/10.1128/AAC.00209-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Perez, R. H., Zendo, T., & Sonomoto, K. (2018). Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications, and prospects. Frontiers in Microbiology, 9, 2085. https://doi.org/10.3389/fmicb.2018.02085

  87. Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., … Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1), fuaa039. https://doi.org/10.1093/femsre/fuaa039

  88. Lakshmayya, N., Lekhya, S., Mohanta, Y., Mandal, Y. K., Agrawal, S. K., D. C., & Mishra, B. (2022). Food preservatives from microbial origin: Industrial perspectives. Role of microbes in Industrial products and processes (pp. 81–106). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119901198.ch4

  89. Yoneyama, F., Ohno, K., Imura, Y., Li, M., Zendo, T., Nakayama, J., … Sonomoto, K. (2011). Lacticin Q-Mediated Selective Toxicity Depending on Physicochemical Features of Membrane Components. Antimicrobial Agents and Chemotherapy, 55(5), 2446–2450. https://doi.org/10.1128/AAC.00808-10

  90. Smaoui, S., Hsouna, A. B., Lahmar, A., Ennouri, K., Mtibaa-Chakchouk, A., Sellem, I., Najah, S., Bouaziz, M., & Mellouli, L. (2016). Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with BacTN635 in stored minced beef meat. Meat science, 117, 196–204. https://doi.org/10.1016/j.meatsci.2016.03.006

  91. Khan, A., Vu, K. D., Riedl, B., & Lacroix, M. (2015). Optimization of the antimicrobial activity of nisin, Na-EDTA and pH against gram-negative and gram-positive bacteria. LWT - Food Science and Technology, 61(1), 124–129. https://doi.org/10.1016/j.lwt.2014.11.035

    Article  CAS  Google Scholar 

  92. Sani, A. A., Pereira, A. F. M., Furlanetto, A., de Sousa, D. S. M., Zapata, T. B., Rall, V. L. M., & Fernandes Júnior, A. (2022). Inhibitory activities of propolis, nisin, melittin and essential oil compounds on Paenibacillus alvei and Bacillus subtilis. Journal of Venomous Animals and Toxins including Tropical Diseases, 28. https://doi.org/10.1590/1678-9199-JVATITD-2022-0025

  93. Cameron, A., Zaheer, R., Adator, E. H., Barbieri, R., Reuter, T., & McAllister, T. A. (2019). Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater. Toxins, 11(8), 475. https://doi.org/10.3390/toxins11080475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanen, G., Sabrine, A., Sabatier, Achour, S., Jeannette, B., & Regaya, I. (2014). Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections. Infectious Disorders Drug Targets, 15. https://doi.org/10.2174/1871526514666140522113337

  95. Alves, F. C. B., Albano, M., Andrade, B. F. M. T., Chechi, J. L., Pereira, A. F. M., Furlanetto, A., … Fernandes Junior, A. (2020). Comparative Proteomics of Methicillin-Resistant Staphylococcus aureus Subjected to Synergistic Effects of the Lantibiotic Nisin and Oxacillin. Microbial Drug Resistance, 26(3), 179–189. https://doi.org/10.1089/mdr.2019.0038

  96. Collin, F., Thompson, R. E., Jolliffe, K. A., Payne, R. J., & Maxwell, A. (2013). Fragments of the bacterial toxin Microcin B17 as Gyrase poisons. PLoS One1, 8(4), e61459. https://doi.org/10.1371/journal.pone.0061459

    Article  CAS  Google Scholar 

  97. Martı́nez, B., Rodrı́guez, A., & Suárez, J. E. (2000). Lactococcin 972, a bacteriocin that inhibits septum formation in lactococci. Microbiology, 146(4), 949–955. https://doi.org/10.1099/00221287-146-4-949

    Article  Google Scholar 

  98. Verma, D. K., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., Baranwal, D., … Srivastav, P. P. (2022). Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience, 46, 101594. https://doi.org/10.1016/j.fbio.2022.101594

  99. Kaškonienė, V., Stankevičius, M., Bimbiraitė-Survilienė, K., Naujokaitytė, G., Šernienė, L., Mulkytė, K., … Maruška, A. (2017). Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology, 101(4), 1323–1335. https://doi.org/10.1007/s00253-017-8088-9

  100. Qin, Y., Wang, Y., He, Y., Zhang, Y., She, Q., Chai, Y., … Shang, Q. (2019). Characterization of Subtilin L-Q11, a Novel Class I Bacteriocin Synthesized by Bacillus subtilis L-Q11 Isolated From Orchard Soil. Frontiers in Microbiology, 10. Retrieved from https://www.frontiersin.org/articles/10.3389/fmicb.2019.00484. Accessed 2019

  101. Sabo, S. S., Lopes, A. M., Santos-Ebinuma, V., de Rangel-Yagui, C., & de Oliveira, R. P. (2018). Bacteriocin partitioning from a clarified fermentation broth of Lactobacillus plantarum ST16Pa in aqueous two-phase systems with sodium sulfate and choline-based salts as additives. Process Biochemistry, 66, 212–221. https://doi.org/10.1016/j.procbio.2017.11.018

    Article  CAS  Google Scholar 

  102. Li, H., Guo, L., Zhang, X., Mu, H., Sha, S., Lin, Y., … Wang, L. (2022). Whole-genome sequencing combined with mass spectrometry to identify bacteriocin and mine silent genes. LWT, 169, 113975. https://doi.org/10.1016/j.lwt.2022.113975

  103. Dai, M., Li, Y., Xu, L., Wu, D., Zhou, Q., Li, P., & Gu, Q. (2021). A novel bacteriocin from Lactobacillus pentosus ZFM94 and its antibacterial mode of action. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.710862

  104. Ye, P., Wang, J., Liu, M., Li, P., & Gu, Q. (2021). Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. LWT, 143, 111125. https://doi.org/10.1016/j.lwt.2021.111125

  105. Zhu, Y., Zhou, Q., Li, P., & Gu, Q. (2021). Purification, characterization, and mode of action of paracin 54, a novel bacteriocin against Staphylococci. Applied Microbiology and Biotechnology, 105(18), 6735–6748. https://doi.org/10.1007/s00253-021-11505-6

    Article  CAS  PubMed  Google Scholar 

  106. Zhao, R., Lu, Y., Ran, J., Li, G., Lei, S., Zhu, Y., & Xu, B. (2020). Purification and characterization of bacteriocin produced by Lactobacillus rhamnosus zrx01. Food Bioscience, 38, 100754. https://doi.org/10.1016/j.fbio.2020.100754

    Article  CAS  Google Scholar 

  107. Thanjavur, N., Sangubotla, R., Lakshmi, B. A., Rayi, R., Mekala, C. D., Reddy, A. S., & Viswanath, B. (2022). Evaluating the antimicrobial and apoptogenic properties of bacteriocin (nisin) produced by Lactococcus lactis. Process Biochemistry, 122, 76–86. https://doi.org/10.1016/j.procbio.2022.09.030

    Article  CAS  Google Scholar 

  108. Jawan, R., Abbasiliasi, S., Tan, J. S., Halim, M., Mustafa, S., Lee, B. H., … Ariff, A. B. (2021). Extractive fermentation for recovery of bacteriocin-like inhibitory substances derived from Lactococcus lactis Gh1 using PEG2000/Dextran T500 aqueous two-phase system. Fermentation, 7(4), 257. https://doi.org/10.3390/fermentation7040257

  109. Goh, H. F., & Philip, K. (2015). Purification and characterization of Bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS One1, 10(10), e0140434. https://doi.org/10.1371/journal.pone.0140434

    Article  CAS  Google Scholar 

  110. Lei, S., Zhao, R., Sun, J., Ran, J., Ruan, X., & Zhu, Y. (2020). Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant’s feces. Food Science & Nutrition, 8(5), 2214–2222. https://doi.org/10.1002/fsn3.1428

    Article  CAS  Google Scholar 

  111. Yap, P. G., Lai, Z. W., & Tan, J. S. (2022). Bacteriocins from lactic acid bacteria: Purification strategies and applications in food and medical industries: A review. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 51. https://doi.org/10.1186/s43088-022-00227-x

    Article  Google Scholar 

  112. Wannun, P., Piwat, S., & Teanpaisan, R. (2014). Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei SD1. Anaerobe, 27, 17–21. https://doi.org/10.1016/j.anaerobe.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  113. Burgess, R. R. (2009). Chapter 20 protein precipitation techniques. In Methods in Enzymology (Vol.463, pp.331–342). Elsevier. https://doi.org/10.1016/S0076-6879(09)63020-2

  114. Xiang, Y. Z., Li, X. Y., Zheng, H. L., Chen, J. Y., Lin, L. B., & Zhang, Q. L. (2021). Purification and antibacterial properties of a novel bacteriocin against Escherichia coli from Bacillus subtilis isolated from blueberry ferments. LWT, 146, 111456. https://doi.org/10.1016/j.lwt.2021.111456

    Article  CAS  Google Scholar 

  115. Jamaluddin, N., Stuckey, D. C., Ariff, A. B., & Faizal Wong, F. W. (2018). Novel approaches to purifying bacteriocin: A review. Critical Reviews in Food Science and Nutrition, 58(14), 2453–2465. https://doi.org/10.1080/10408398.2017.1328658

    Article  CAS  PubMed  Google Scholar 

  116. Dahiya, D., & Nigam, P. S. (2022). Probiotics, prebiotics, synbiotics, and fermented foods as potential biotics in nutrition improving health via microbiome-gut-brain axis. Fermentation, 8(7), 303. https://doi.org/10.3390/fermentation8070303

    Article  CAS  Google Scholar 

  117. Kamiloğlu, A., Kaban, G., & Kaya, M. (2019). Effects of autochthonous Lactobacillus plantarum strains on Listeria monocytogenes in sucuk during ripening. Journal of Food Safety, 39(3), e12618. https://doi.org/10.1111/jfs.12618

    Article  Google Scholar 

  118. Castellano, P., Peña, N., Ibarreche, M. P., Carduza, F., Soteras, T., & Vignolo, G. (2018). Antilisterial efficacy of Lactobacillus bacteriocins and organic acids on frankfurters. Impact on sensory characteristics. Journal of Food Science and Technology, 55(2), 689–697. https://doi.org/10.1007/s13197-017-2979-8

    Article  CAS  PubMed  Google Scholar 

  119. de Castilho, N. P. A., Todorov, S. D., Oliveira, L. L., Bersot, L. dos S., & Nero, L. A. (2020). Inhibition of Listeria monocytogenes in fresh sausage by bacteriocinogenic Lactobacillus curvatus UFV-NPAC1 and its semi-purified bacteriocin. LWT, 118, 108757. https://doi.org/10.1016/j.lwt.2019.108757

  120. Ünlü, G., Nielsen, B., & Ionita, C. (2016). Inhibition of Listeria monocytogenes in hot dogs by surface application of freeze-dried bacteriocin-containing powders from lactic acid bacteria. Probiotics and Antimicrobial Proteins, 8(2), 102–110. https://doi.org/10.1007/s12602-016-9213-2

    Article  PubMed  Google Scholar 

  121. Casaburi, A., Di Martino, V., Ferranti, P., Picariello, L., & Villani, F. (2016). Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control, 59, 31–45. https://doi.org/10.1016/j.foodcont.2015.05.016

    Article  CAS  Google Scholar 

  122. Isa, J. K., & Razavi, S. H. (2018). The use of Lactobacillus acidophilus and Bifidobacterium animalis ssp. Lactis BB12, as probiotics to reduce the risk of food poisoning in minced meat. Applied Food Biotechnology, 5(3). https://doi.org/10.22037/afb.v5i3.21127

  123. Smaoui, S., Elleuch, L., Bejar, W., Karray-Rebai, I., Ayadi, I., Jaouadi, B., … Mellouli, L. (2010). Inhibition of fungi and gram-negative bacteria by Bacteriocin BacTN635 produced by lactobacillus plantarum sp. TN635. Applied Biochemistry and Biotechnology, 162(4), 1132–1146. https://doi.org/10.1007/s12010-009-8821-7

  124. Smaoui, S., Ennouri, K., Chakchouk-Mtibaa, A., Karray-Rebai, I., Hmidi, M., Bouchaala, K., & Mellouli, L. (2017). Relationships between textural modifications, lipid and protein oxidation and sensory attributes of refrigerated Turkey Meat Sausage treated with bacteriocin BacTN635. Food and Bioprocess Technology, 10(9), 1655–1667. https://doi.org/10.1007/s11947-017-1933-0

    Article  CAS  Google Scholar 

  125. Lu, Y., Yan, H., Li, X., Gu, Y., Wang, X., Yi, Y., … Lü, X. (2020). Physicochemical properties and mode of action of a novel bacteriocin BM1122 with broad antibacterial spectrum produced by Lactobacillus crustorum MN047. Journal of Food Science, 85(5), 1523–1535. https://doi.org/10.1111/1750-3841.15131

  126. Lu, Y., Aizhan, R., Yan, H., Li, X., Wang, X., Yi, Y., … Lü, X. (2020). Characterization, modes of action, and application of a novel broad-spectrum bacteriocin BM1300 produced by Lactobacillus crustorum MN047. Brazilian Journal of Microbiology, 51(4), 2033–2048. https://doi.org/10.1007/s42770-020-00311-3

  127. Orihuel, A., Bonacina, J., Vildoza, M. J., Bru, E., Vignolo, G., Saavedra, L., & Fadda, S. (2018). Biocontrol of Listeria monocytogenes in a meat model using a combination of a bacteriocinogenic strain with curing additives. Food Research International, 107, 289–296. https://doi.org/10.1016/j.foodres.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  128. Banerjee, G., Nandi, A., & Ray, A. K. (2017). Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Archives of Microbiology, 199(1), 115–124. https://doi.org/10.1007/s00203-016-1283-8

    Article  CAS  PubMed  Google Scholar 

  129. Kingcha, Y., Tosukhowong, A., Zendo, T., Roytrakul, S., Luxananil, P., Chareonpornsook, K., … Visessanguan, W. (2012). Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control, 25(1), 190–196. https://doi.org/10.1016/j.foodcont.2011.10.005

  130. Leelaphiwat, P., Pechprankan, C., Siripho, P., Bumbudsanpharoke, N., & Harnkarnsujarit, N. (2022). Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chemistry, 369, 130956. https://doi.org/10.1016/j.foodchem.2021.130956

    Article  CAS  PubMed  Google Scholar 

  131. Giello, M., La Storia, A., De Filippis, F., Ercolini, D., & Villani, F. (2018). Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiology, 72, 1–15. https://doi.org/10.1016/j.fm.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  132. Banerji, R., Karkee, A., & Saroj, S. D. (2022). Bacteriocins against foodborne pathogens (review). Applied Biochemistry and Microbiology, 58(5), 518–539. https://doi.org/10.1134/S0003683822050052

    Article  CAS  Google Scholar 

  133. Santiesteban-López, N. A., Gómez-Salazar, J. A., Santos, E. M., Campagnol, P. C. B., Teixeira, A., Lorenzo, J. M., … Domínguez, R. (2022). Natural antimicrobials: a clean label strategy to improve the shelf life and safety of reformulated meat products. Foods, 11(17), 2613. https://doi.org/10.3390/foods11172613

  134. Xie, Y., Zhang, M., Gao, X., Shao, Y., Liu, H., Jin, J., … Zhang, H. (2018). Development and antimicrobial application of plantaricin BM-1 incorporating a PVDC film on fresh pork meat during cold storage. Journal of Applied Microbiology, 125(4), 1108–1116. https://doi.org/10.1111/jam.13912

  135. Zhang, M., Gao, X., Zhang, H., Liu, H., Jin, J., Yang, W., & Xie, Y. (2016). Development and anti-listerial activity of PE-based biological preservative films incorporating plantaricin BM-1. FEMS Microbiology Letters, fnw283. https://doi.org/10.1093/femsle/fnw283

  136. Barbiroli, A., Musatti, A., Capretti, G., Iametti, S., & Rollini, M. (2017). Sakacin-A antimicrobial packaging for decreasing Listeria contamination in thin-cut meat: Preliminary assessment. Journal of the Science of Food and Agriculture, 97(3), 1042–1047. https://doi.org/10.1002/jsfa.8120

    Article  CAS  PubMed  Google Scholar 

  137. Mauriello, G., Ercolini, D., La Storia, A., Casaburi, A., & Villani, F. (2004). Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. Journal of Applied Microbiology, 97(2), 314–322. https://doi.org/10.1111/j.1365-2672.2004.02299.x

    Article  CAS  PubMed  Google Scholar 

  138. Sebti, I., Delves-Broughton, J., & Coma, V. (2003). Physicochemical properties and bioactivity of nisin-containing cross-linked hydroxypropylmethylcellulose films. Journal of Agricultural and Food Chemistry, 51(22), 6468–6474. https://doi.org/10.1021/jf0302613

    Article  CAS  PubMed  Google Scholar 

  139. Trejo-González, L., Rodríguez-Hernández, A. I., del Rocío López-Cuellar, Ma., Martínez-Juárez, V. M., & Chavarría-Hernández, N. (2018). Antimicrobial pectin-gellan films: Effects on three foodborne pathogens in a meat medium, and selected physical-mechanical properties. CyTA - Journal of Food, 16(1), 469–476. https://doi.org/10.1080/19476337.2017.1422278

  140. Pérez-Arauz, Á-O., Rodríguez-Hernández, A. I., del Rocío López-Cuellar, Ma., Martínez-Juárez, V. M., & Chavarría-Hernández, N. (2021). Films based on Pectin, Gellan, EDTA, and bacteriocin-like compounds produced by Streptococcus infantarius for the bacterial control in fish packaging. Journal of Food Processing and Preservation, 45(1), e15006. https://doi.org/10.1111/jfpp.15006

  141. Yang, Y., Li, G., Wu, D., Liu, J., Li, X., Luo, P., … Wu, Y. (2020). Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology, 96, 233–252. https://doi.org/10.1016/j.tifs.2019.12.021

  142. Opálková Šišková, A., Mosnáčková, K., Musioł, M., Opálek, A., Bučková, M., Rychter, P., & Eckstein Andicsová, A. (2022). Electrospun nisin-loaded poly(ε-caprolactone)-based active food packaging. Materials, 15(13), 4540. https://doi.org/10.3390/ma15134540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kaewprachu, P., Ben Amara, C., Oulahal, N., Gharsallaoui, A., Joly, C., Tongdeesoontorn, W., … Degraeve, P. (2018). Gelatin films with nisin and catechin for minced pork preservation. Food Packaging and Shelf Life, 18, 173–183. https://doi.org/10.1016/j.fpsl.2018.10.011

  144. Cao, Y., Warner, R. D., & Fang, Z. (2019). Effect of chitosan/nisin/gallic acid coating on preservation of pork loin in high oxygen modified atmosphere packaging. Food Control, 101, 9–16. https://doi.org/10.1016/j.foodcont.2019.02.013

    Article  CAS  Google Scholar 

  145. Martillanes, S., Rocha-Pimienta, J., Llera-Oyola, J., Gil, M. V., Ayuso-Yuste, M. C., García-Parra, J., & Delgado-Adámez, J. (2021). Control of Listeria monocytogenes in sliced dry-cured Iberian ham by high pressure processing in combination with an eco-friendly packaging based on chitosan, nisin and phytochemicals from rice bran. Food Control, 124, 107933. https://doi.org/10.1016/j.foodcont.2021.107933

    Article  CAS  Google Scholar 

  146. Pattanayaiying, R., H-Kittikun, A., & Cutter, C. N. (2015). Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods. International Journal of Food Microbiology, 207, 77–82. https://doi.org/10.1016/j.ijfoodmicro.2015.04.045

    Article  CAS  PubMed  Google Scholar 

  147. Batpho, K., Boonsupthip, W., & Rachtanapun, C. (2017). Antimicrobial activity of collagen casing impregnated with nisin against foodborne microorganisms associated with ready-to-eat sausage. Food Control, 73, 1342–1352. https://doi.org/10.1016/j.foodcont.2016.10.053

    Article  CAS  Google Scholar 

  148. Morsy, M. K., Elsabagh, R., & Trinetta, V. (2018). Evaluation of novel synergistic antimicrobial activity of nisin, lysozyme, EDTA nanoparticles, and/or ZnO nanoparticles to control foodborne pathogens on minced beef. Food Control, 92, 249–254. https://doi.org/10.1016/j.foodcont.2018.04.061

    Article  CAS  Google Scholar 

  149. Gedarawatte, S. T. G., Ravensdale, J. T., Johns, M. L., Li, M., Al-Salami, H., Dykes, G. A., & Coorey, R. (2022). Evaluation of the water-holding and anti-spoilage effect of a bacterial cellulose nanocrystal coating for the storage of vacuum-packaged beef. Food Packaging and Shelf Life, 31, 100818. https://doi.org/10.1016/j.fpsl.2022.100818

    Article  Google Scholar 

  150. Meral, R., Alav, A., Karakas, C., Dertli, E., Yilmaz, M. T., & Ceylan, Z. (2019). Effect of electrospun nisin and curcumin loaded nanomats on the microbial quality, hardness and sensory characteristics of rainbow trout fillet. LWT, 113, 108292. https://doi.org/10.1016/j.lwt.2019.108292

    Article  CAS  Google Scholar 

  151. Huq, T., Vu, K. D., Riedl, B., Bouchard, J., & Lacroix, M. (2015). Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiology, 46, 507–514. https://doi.org/10.1016/j.fm.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  152. Le, N., Bach, L., Nguyen, D., Le, T., Pham, K., Nguyen, D., & Thi, H. (2019). Evaluation of factors affecting antimicrobial activity of bacteriocin from Lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative. International Journal of Environmental Research and Public Health, 16(6), 1017. https://doi.org/10.3390/ijerph16061017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ghabraie, M., Vu, K. D., Huq, T., Khan, A., & Lacroix, M. (2016). Antilisterial effects of antibacterial formulations containing essential oils, nisin, nitrite and organic acid salts in a sausage model. Journal of Food Science and Technology, 53(6), 2625–2633. https://doi.org/10.1007/s13197-016-2232-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E., & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid Bacteria on Meat Batters Properties. Food and Bioprocess Technology, 6(6), 1505–1515. https://doi.org/10.1007/s11947-012-0865-y

    Article  Google Scholar 

  155. Muthukumarasamy, P., & Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164–169. https://doi.org/10.1016/j.ijfoodmicro.2006.04.036

    Article  CAS  PubMed  Google Scholar 

  156. Punia Bangar, S., Chaudhary, V., Singh, T. P., & Özogul, F. (2022). Retrospecting the concept and industrial significance of LAB bacteriocins. Food Bioscience, 46, 101607. https://doi.org/10.1016/j.fbio.2022.101607

    Article  CAS  Google Scholar 

  157. Field, D., Ross, R. P., & Hill, C. (2018). Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 20, 1–6. https://doi.org/10.1016/j.cofs.2018.02.004

    Article  Google Scholar 

  158. Zheng, Y., Du, Y., Qiu, Z., Liu, Z., Qiao, J., Li, Y., & Caiyin, Q. (2022). Nisin Variants generated by Protein Engineering and their Properties. Bioengineering, 9(6), 251. https://doi.org/10.3390/bioengineering9060251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rouse, S., Field, D., Daly, K. M., O’Connor, P. M., Cotter, P. D., Hill, C., & Ross, R. P. (2012). Bioengineered nisin derivatives with enhanced activity in complex matrices. Microbial Biotechnology, 5(4), 501–508. https://doi.org/10.1111/j.1751-7915.2011.00324.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Field, D., Blake, T., Mathur, H., O’ Connor, P. M., Cotter, P. D., Ross, P., & Hill, C. (2019). Bioengineering nisin to overcome the nisin resistance protein. Molecular Microbiology, 111(3), 717–731. https://doi.org/10.1111/mmi.14183

    Article  CAS  PubMed  Google Scholar 

  161. Kuniyoshi, T. M., O’Connor, P. M., Lawton, E., Thapa, D., Mesa-Pereira, B., Abulu, S., … Cotter, P. D. (2022). An oxidation resistant pediocin PA-1 derivative and penocin A display effective anti-Listeria activity in a model human gut environment. Gut Microbes, 14(1), 2004071. https://doi.org/10.1080/19490976.2021.2004071

  162. Field, D., Begley, M., O’Connor, P. M., Daly, K. M., Hugenholtz, F., Cotter, P. D., … Ross, R. P. (2012). Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens. PLoS ONE, 7(10), e46884. https://doi.org/10.1371/journal.pone.0046884

  163. Yeluri Jonnala, B. R., Feehily, C., O’Connor, P. M., Field, D., Hill, C., Ross, R. P., … Cotter, P. D. (2021). Assessing the ability of nisin A and derivatives thereof to inhibit gram-negative bacteria from the genus Thermus. Journal of Dairy Science, 104(3), 2632–2640. https://doi.org/10.3168/jds.2020-19350

  164. Zaschke-Kriesche, J., Behrmann, L. V., Reiners, J., Lagedroste, M., Gröner, Y., Kalscheuer, R., & Smits, S. H. J. (2019). Bypassing lantibiotic resistance by an effective nisin derivative. Bioorganic & Medicinal Chemistry, 27(15), 3454–3462. https://doi.org/10.1016/j.bmc.2019.06.031

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.S., M.A.S., and J.M.L; methodology: N.E.; software: T.D. and M.C.; validation: S.S. and J.M.L.; formal analysis: M.K; investigation: J.M.L.; resources: J.M.L.; data curation: S.S.; writing—original draft preparation: S.S., N.E., M.K., and T.D; writing—review and editing: S.S., M.A.S., M.R., and J.M.L; visualization: J.M.L.; supervision: J.M.L.; project administration: S.S. and J.M.L.; funding acquisition: J.M.L.

All authors have read and agreed to the published version of the manuscript.”

Corresponding authors

Correspondence to Slim Smaoui or Mohammad Ali Shariati.

Ethics declarations

Ethical Approval

In this study, animal experiment was not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaoui, S., Echegaray, N., Kumar, M. et al. Beyond Conventional Meat Preservation: Saddling the Control of Bacteriocin and Lactic Acid Bacteria for Clean Label and Functional Meat Products. Appl Biochem Biotechnol 196, 3604–3635 (2024). https://doi.org/10.1007/s12010-023-04680-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04680-x

Keywords

Navigation