Skip to main content
Log in

Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactic acid bacteria that produce Lactococcus-specific bacteriocins were isolated and identified as Lactococcus lactis from fresh corn or lettuce. Among them, four isolates were identified as lactococcin Q producers. Seven isolates showed antimicrobial activity against a lactococcin Q producer, L. lactis QU 4, as well as against nisin Z and lacticin Q producers belonging to L. lactis. Strain QU 7 was selected as a standard strain and showed no cross-immunity to lactococcin Q or other lactococcal bacteriocins. The bacteriocin produced by strain QU 7 was purified in three chromatographic steps, and its molecular mass was determined to be 5041.35 Da. The amino acid sequence analysis revealed that it is a novel class IId bacteriocin, referred to as lactococcin Z. It consisted of 45 amino acid residues. The lczA gene encoding the prepeptide of lactococcin Z showed homology to lactococcins A, B, and M. Thus, this report demonstrates a new example of Lactococcus-specific bacteriocins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Drider D, Rebuffat D (2011) Prokaryotic antimicrobial peptide: from genes to applications. Springer, New York

    Book  Google Scholar 

  2. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13:S3. doi:10.1186/1475-2859-13-S1-S3

    Article  Google Scholar 

  3. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. doi:10.1038/nrmicro2937

    Article  CAS  Google Scholar 

  4. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. doi:10.1038/nrmicro1273

    Article  CAS  Google Scholar 

  5. Asaduzzaman SM, Sonomoto K (2009) Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 107:475–487. doi:10.1016/j.jbiosc.2009.01.003

    Article  CAS  Google Scholar 

  6. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582. doi:10.1128/MMBR.00016-05

    Article  CAS  Google Scholar 

  7. Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE (2010) Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins. Probiotics Antimicrob Proteins 2:52–60. doi:10.1007/s12602-009-9021-z

    Article  CAS  Google Scholar 

  8. Masuda Y, Zendo T, Sonomoto K (2012) New type non-lantibiotic bacteriocins: circular and leaderless bacteriocins. Benef Microb 3:3–12. doi:10.3920/BM2011.0047

    Article  CAS  Google Scholar 

  9. Iwatani S, Zendo T, Sonomoto K (2011) Class IId or linear and non-pediocin-like bacteriocins. Prokaryotic antimicrobial peptides: from gene to applications. In: Drider D, Rebuffat D (ed) Springer, New York, p 237–252

  10. Ferchichi M, Frere J, Mabrouk K, Manai M (2001) Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol Lett 205:49–55

    Article  CAS  Google Scholar 

  11. van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G (1991) Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl Environ Microbiol 57:492–498

    Google Scholar 

  12. Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto K (2009) Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol 75:1552–1558. doi:10.1128/AEM.02299-08

    Article  CAS  Google Scholar 

  13. Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto K (2007) Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria. Appl Environ Microbiol 73:2871–2877. doi:10.1128/AEM.02286-06

    Article  CAS  Google Scholar 

  14. Zendo T, Yoneyama F, Sonomoto K (2010) Lactococcal membrane-permeabilizing antimicrobial peptides. Appl Microbiol Biotechnol 88:1–9. doi:10.1007/s00253-010-2764-3

    Article  CAS  Google Scholar 

  15. Holo H, Nilssen O, Nes IF (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 173:3879–3887

    CAS  Google Scholar 

  16. van Belkum MJ, Kok J, Venema G (1992) Cloning, sequencing, and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl Environ Microbiol 58:572–577

    Google Scholar 

  17. Stoddard GW, Petzel JP, van Belkum MJ, Kok J, McKay LL (1992) Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol 58:1952–1961

    CAS  Google Scholar 

  18. Nissen-Meyer J, Holo H, Håvarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692

    CAS  Google Scholar 

  19. Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K (2006) Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl Environ Microbiol 72:3383–3389. doi:10.1128/AEM.72.5.3383-3389.2006

    Article  CAS  Google Scholar 

  20. Masuda Y, Zendo T, Sawa N, Perez RH, Nakayama J, Sonomoto K (2012) Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. J Appl Microbiol 112:99–108. doi:10.1111/j.1365-2672.2011.05180.x

    Article  CAS  Google Scholar 

  21. de Man JC, Rogosa M, Sharpe M (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135

    Article  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York

    Google Scholar 

  23. Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y, Kobayashi G, Nakayama J, Ishizaki A, Sonomoto K (2005) Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. J Appl Microbiol 99:1181–1190. doi:10.1111/j.1365-2672.2005.02704.x

    Article  CAS  Google Scholar 

  24. Ennahar S, Asou Y, Zendo T, Sonomoto K, Ishizaki A (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70:291–301

    Article  CAS  Google Scholar 

  25. Parente E, Hill C (1992) A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J Appl Bacteriol 73:290–298

    Article  CAS  Google Scholar 

  26. Mu F, Masuda Y, Zendo T, Ono H, Kitagawa H, Ito H, Nakayama J, Sonomoto K (2014) Biological function of a DUF95 superfamily protein involved in the biosynthesis of a circular bacteriocin, leucocyclicin Q. J Biosci Bioeng 117:158–164. doi:10.1016/j.jbiosc.2013.06.023

    Article  CAS  Google Scholar 

  27. Iwatani S, Horikiri Y, Zendo T, Nakayama J, Sonomoto K (2013) Bifunctional gene cluster lnqBCDEF mediates bacteriocin production and immunity with differential genetic requirements. Appl Environ Microbiol 79:2446–2449. doi:10.1128/AEM.03783-12

    Article  CAS  Google Scholar 

  28. Matsusaki H, Endo N, Sonomoto K, Ishizaki A (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Appl Microbiol Biotechnol 45:36–40

    Article  CAS  Google Scholar 

  29. Ishibashi N, Himeno K, Fujita K, Masuda Y, Perez RH, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Biosci Biotechnol Biochem 76:947–953. doi:10.1271/bbb.110972

    Article  CAS  Google Scholar 

  30. Troutt AB, McHeyzer-Williams MG, Pulendran B, Nossal GJ (1992) Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci USA 89:9823–9825

    Article  CAS  Google Scholar 

  31. Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364

    Article  CAS  Google Scholar 

  32. Zendo T (2013) Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci Biotechnol Biochem 77:893–899. doi:10.1271/bbb.130014

    Article  CAS  Google Scholar 

  33. Fimland G, Eijsink VG, Nissen-Meyer J (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148:3661–3670

    CAS  Google Scholar 

  34. Ishibashi N, Himeno K, Masuda Y, Perez RH, Iwatani S, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2014) Gene cluster responsible for secretion of and immunity to multiple bacteriocins, the NKR-5-3 enterocins. Appl Environ Microbiol 80:6647–6655. doi:10.1128/AEM.02312-14

    Article  Google Scholar 

  35. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364

    Article  CAS  Google Scholar 

  36. Yoneyama F, Imura Y, Ichimasa S, Fujita K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K (2009) Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Appl Environ Microbiol 75:538–541. doi:10.1128/AEM.01827-08

    Article  CAS  Google Scholar 

  37. Yoneyama F, Shioya K, Zendo T, Nakayama J, Sonomoto K (2010) Effect of a negatively charged lipid on membrane-lacticin Q interaction and resulting pore formation. Biosci Biotechnol Biochem 74:218–221

    Article  CAS  Google Scholar 

  38. van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN, Abee T (1991) The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173:7934–7941

    Google Scholar 

  39. Venema K, Abee T, Haandrikman AJ, Leenhouts KJ, Kok J, Konings WN, Venema G (1993) Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl Environ Microbiol 59:1041–1048

    CAS  Google Scholar 

  40. Moll G, Ubbink-Kok T, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ (1996) Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol 178:600–605

    CAS  Google Scholar 

  41. Moll G, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ (1998) Mechanistic properties of the two-component bacteriocin lactococcin G. J Bacteriol 180:96–99

    CAS  Google Scholar 

  42. Kjos M, Oppegård C, Diep DB, Nes IF, Veening JW, Nissen-Meyer J, Kristensen T (2014) Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol Microbiol 92:1177–1187. doi:10.1111/mmi.12632

    Article  CAS  Google Scholar 

  43. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci USA 104:2384–2389. doi:10.1073/pnas.0608775104

    Article  CAS  Google Scholar 

  44. Kjos M, Nes IF, Diep DB (2011) Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl Environ Microbiol 77:3335–3342. doi:10.1128/AEM.02602-10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. 24380051.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Zendo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishibashi, N., Seto, H., Koga, S. et al. Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z. Probiotics & Antimicro. Prot. 7, 222–231 (2015). https://doi.org/10.1007/s12602-015-9196-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-015-9196-4

Keywords

Navigation