Skip to main content
Log in

Microbial Diversity of Deep-sea Sediments from Three Newly Discovered Hydrothermal Vent Fields in the Central Indian Ridge

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Since the discovery of hydrothermal vents in the late 1970s, deep-sea hydrothermal vent fields have attracted great attention as biological hotspots. However, compared with other ocean ridges, the structure and function of microbial communities inhabiting vent fields in the Central Indian ridge (CIR) remain understudied. Here, we provide for the first time 16S rRNA gene-based comparative metagenomic analysis of the sediment-associated microbial communities from three newly discovered vent fields in the CIR. Sediment samples collected in the Invent B, Invent E and Onnuri vent fields varied in geochemical properties, elemental concentrations and associated microbial communities. Proteobacteria (Gammaproteobacteria) was the dominant phylum in Invent B and Onnuri vent fields. In contrast, Invent E mainly consisted of Chloroflexi and Euryarchaeota. Predicted functional profiling revealed that the microbial communities in the three vents are dominated by chemoheterotrophic functions. In addition, microbial communities capable of respiration of sulfur compounds, nitrification, nitrite oxidation, methylotrophy, and methanotropy were found to be the main chemolithoautotrophs. Compared to other vent fields, Invent E showed a predominance of archaeal methanogens suggesting it exhibits slightly different geochemistry. Multivariate analysis indicated that the biogeochemical and trace metal differences are reflected in the sediment microbial compositions of the three vent fields. This study expands our current understanding of the microbial community structure and potential ecological functions of the newly discovered hydrothermal vent fields in the CIR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw Illumina sequences generated for this study can be found in the NCBI (https://www.ncbi.nlm.nih.gov/) under Bio Project number PRJNA751690.

References

  • Adam N, Kriete C, Garbe-Schönberg D, Gonnella G, Krause S, Schippers A, Kurtz S, Schwarz-Schampera U, Han Y, Indenbirken D, Perner M (2020) Microbial community compositions and geochemistry of sediments with increasing distance to the hydrothermal vent outlet in the Kairei field. Geomicrobiol J 37:242–254. https://doi.org/10.1080/01490451.2019.1694107

    Article  Google Scholar 

  • Akerman NH, Butterfield DA, Huber JA (2013) Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol 4:185. https://doi.org/10.3389/fmicb.2013.00185

    Article  Google Scholar 

  • Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Martínez-Cruz M, de Moor JM, Pieper DH, Chavarría M (2019) Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica. Extremophiles 23:177–187. https://doi.org/10.1007/s00792-018-01072-6

    Article  Google Scholar 

  • Armougom F, Raoult D (2009) Exploring microbial diversity using 16S rRNA high-throughput methods. J Comput Sci Syst Biol 2:74–92. https://doi.org/10.4172/jcsb.1000019

    Article  Google Scholar 

  • Barton LL, Fardeau ML, Fauque GD (2014) Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Met Ions Life Sci 14:237–277. https://doi.org/10.1007/978-94-017-9269-1_10

    Article  Google Scholar 

  • Bellec L, Cambon-Bonavita M-A, Durand L, Aube J, Gayet N, Sandulli R, Brandily C, Zeppilli D (2020) Microbial communities of the shallow-water hydrothermal vent near Naples, Italy, and chemosynthetic symbionts associated with a free-living marine nematode. Front Microbiol 11:2023. https://doi.org/10.3389/fmicb.2020.02023

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:326–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  • Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270. https://doi.org/10.1128/AEM.00574-06

    Article  Google Scholar 

  • Campbell BJ, Polson SW, Allen LZ, Williamson SJ, Lee CK, Wommack KE, Cary SC (2013) Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Front Microbiol 4:182. https://doi.org/10.3389/fmicb.2013.00182

    Article  Google Scholar 

  • Cao H, Wang Y, Lee OO, Zeng X, Shao Z, Qian PY (2014) Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge. Mbio 5:e00980-00913. https://doi.org/10.1128/mBio.00980-13

    Article  Google Scholar 

  • Carini P, Dupont CL, Santoro AE (2018) Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol 20:2112–2124

    Article  Google Scholar 

  • Cerqueira T, Pinho D, Froufe H, Santos RS, Bettencourt R, Egas C (2017) Sediment Microbial diversity of three deep-sea hydrothermal vents Southwest of the Azores. Microb Ecol 74:332–349. https://doi.org/10.1007/s00248-017-0943-9

    Article  Google Scholar 

  • Chen H, Li DH, Jiang AJ, Li XG, Wu SJ, Chen JW, Qu MJ, Qi XQ, Dai J, Zhao R, Zhang WJ, Liu SS, Wu LF (2022) Metagenomic analysis reveals wide distribution of phototrophic bacteria in hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. Mar Life Sci Technol 4:255–267. https://doi.org/10.1007/s42995-021-00121-y

    Article  Google Scholar 

  • Ding J, Zhang Y, Wang H, Jian H, Leng H, Xiao X (2017) Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front Microbiol 8:1012. https://doi.org/10.3389/fmicb.2017.01012

    Article  Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882. https://doi.org/10.1038/nature06411

    Article  Google Scholar 

  • Erikstad H-A, Ceballos RM, Smestad NB, Birkeland N-K (2019) Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol 10:1129. https://doi.org/10.3389/fmicb.2019.01129

    Article  Google Scholar 

  • Fadeev E, Cardozo-Mino MG, Rapp JZ, Bienhold C, Salter I, Salman-Carvalho V, Molari M, Tegetmeyer HE, Buttigieg PL, Boetius A (2021) Comparison of two 16S rRNA Primers (V3–V4 and V4–V5) for studies of Arctic microbial communities. Front Microbiol 12:637526. https://doi.org/10.3389/fmicb.2021.637526

    Article  Google Scholar 

  • Flores GE, Campbell JH, Kirshtein JD, Meneghin J, Podar M, Steinberg JI, Seewald JS, Tivey MK, Voytek MA, Yang ZK, Reysenbach AL (2011) Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 13:2158–2171. https://doi.org/10.1111/j.1462-2920.2011.02463.x

    Article  Google Scholar 

  • Gamo T, Chiba H, Yamanaka T, Okudaira T, Hashimoto J, Tsuchida S, Ishibashi J, Kataoka S, Tsunogai U, Okamura K, Sano Y, Shinjo R (2001) Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth Planet Sc Lett 193:371–379. https://doi.org/10.1016/S0012-821x(01)00511-8

    Article  Google Scholar 

  • Garcia JL, Ollivier B, Whitman WB (2006) The order methanomicrobiales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, New York, pp 208–230

    Chapter  Google Scholar 

  • Garcia JL, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226. https://doi.org/10.1006/anae.2000.0345

    Article  Google Scholar 

  • German CR, Von Damm KL (2004) Hydrothermal processes. In: Turekian KK, Holland HD (eds) The oceans and marine geochemistry, treatise on geochemistry. Elsevier, New York, pp 181–222

    Google Scholar 

  • Giovannoni SJ, Rappe MS, Vergin KL, Adair NL (1996) 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc Natl Acad Sci USA 93:7979–7984. https://doi.org/10.1073/pnas.93.15.7979

    Article  Google Scholar 

  • Gulmann LK, Beaulieu SE, Shank TM, Ding K, Seyfried WE, Sievert SM (2015) Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents. Front Microbiol 6:901. https://doi.org/10.3389/fmicb.2015.00901

    Article  Google Scholar 

  • Hanada S, Sekiguchi Y (2014) The phylum Gemmatimonadetes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, Heidelberg, pp 677–681. https://doi.org/10.1007/978-3-642-38954-2_164

    Chapter  Google Scholar 

  • Hoek J, Banta A, Hubler F, Reysenbach AL (2003) Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology 1:119–127. https://doi.org/10.1046/j.1472-4669.2003.00015.x

    Article  Google Scholar 

  • Hou J, Sievert SM, Wang Y, Seewald JS, Natarajan VP, Wang F, Xiao X (2020) Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome 8:102. https://doi.org/10.1186/s40168-020-00851-8

    Article  Google Scholar 

  • Huber H, Stetter KO (2006) Thermoplasmatales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 101–112

    Chapter  Google Scholar 

  • Imhoff JF (1992) The Family Ectothiorhodospiraceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K (eds) The Prokaryotes. Springer, New York, pp 3222–3229

    Chapter  Google Scholar 

  • Imhoff JF (2014) The Family Chromatiaceae. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, Heidelberg, pp 151–178

    Google Scholar 

  • Jang S-J, Chung Y, Jun S, Won Y-J (2022) Connectivity and divergence of symbiotic bacteria of deep-sea hydrothermal vent mussels in relation to the structure and dynamics of mid-ocean ridges. Front Mar Sci 9:845965. https://doi.org/10.3389/fmars.2022.845965

    Article  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725. https://doi.org/10.1126/science.229.4715.717

    Article  Google Scholar 

  • Kawaichi S, Ito N, Kamikawa R, Sugawara T, Yoshida T, Sako Y (2013) Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum “Chloroflexi” isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int J Syst Evol Microbiol 63:2992–3002. https://doi.org/10.1099/ijs.0.046532-0

    Article  Google Scholar 

  • Kawagucci S, Miyazaki J, Noguchi T, Okamura K, Shibuya T, Watsuji T, Nishizawa M, Watanabe H, Okino K, Takahata N, Sano Y, Nakamura K, Shuto A, Abe M, Takaki Y, Nunoura T, Koonjul M, Singh M, Beedessee G, Khishma M, Bhoyroo V, Bissessur D, Kumar LS, Marie D, Tamaki K, Takai K (2016) Fluid chemistry in the Solitaire and Dodo hydrothermal fields of the Central Indian Ridge. Geofluids 16:988–1005. https://doi.org/10.1111/gfl.12201

    Article  Google Scholar 

  • Kim J, Son SK, Kim D, Pak SJ, Yu OH, Walker SL, Oh J, Choi SK, Ra K, Ko Y, Kim KH, Lee JH, Son J (2020) Discovery of active hydrothermal vent fields along the Central Indian Ridge, 8–12 degrees S. Geochem Geophy Geosy 21:e2020GC009058. https://doi.org/10.1029/2020GC009058

    Article  Google Scholar 

  • Kim J, Lim D, Jeong D, Xu Z, Kim H, Kim J, Kim D (2022) Mercury (Hg) geochemistry of mid-ocean ridge sediments on the Central Indian Ridge: Chemical forms and isotopic composition. Chem Geol 60:120942. https://doi.org/10.1016/j.chemgeo.2022.120942

    Article  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808

    Article  Google Scholar 

  • Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346. https://doi.org/10.3389/fmicb.2015.01346

    Article  Google Scholar 

  • Kolde R (2019) pheatmap: Pretty heatmaps. R Package Version 1:12

    Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  Google Scholar 

  • Lecoeuvre A, Menez B, Cannat M, Chavagnac V, Gerard E (2021) Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME J 15:818–832. https://doi.org/10.1038/s41396-020-00816-7

    Article  Google Scholar 

  • Lim D, Kim J, Kim W, Kim J, Kim D, Zhang L, Kwack K, Xu Z (2022) Characterization of Geochemistry in Hydrothermal Sediments From the Newly Discovered Onnuri Vent Field in the Middle Region of the Central Indian Ridge. Front Mar Sci 9:810949. https://doi.org/10.3389/fmars.2022.810949

    Article  Google Scholar 

  • Liu C, Cui Y, Li X, Yao M (2021a) microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97:255. https://doi.org/10.1093/femsec/fiaa255

    Article  Google Scholar 

  • Liu X, Wang Y, Gu JD (2021b) Ecological distribution and potential roles of Woesearchaeota in anaerobic biogeochemical cycling unveiled by genomic analysis. Comput Struct Biotechnol J 19:794–800. https://doi.org/10.1016/j.csbj.2021.01.013

    Article  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507

    Article  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  Google Scholar 

  • Mehrshad M, Rodriguez-Valera F, Amoozegar MA, Lopez-Garcia P, Ghai R (2018) The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J 12:655–668. https://doi.org/10.1038/s41396-017-0009-5

    Article  Google Scholar 

  • Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A (2016) Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol 18:4348–4368. https://doi.org/10.1111/1462-2920.13304

    Article  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14. https://doi.org/10.1111/j.1574-6941.2008.00502.x

    Article  Google Scholar 

  • Nakamura K, Takai K (2015) Indian Ocean hydrothermal systems: seafloor hydrothermal activities, physical and chemical characteristics of hydrothermal fluids, and vent-associated biological communities. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafloor biosphere linked to hydrothermal systems. Springer, Tokyo, pp 147–161

    Google Scholar 

  • Namirimu T, Kim YJ, Park MJ, Lim D, Lee JH, Kwon KK (2022) Microbial community structure and functional potential of deep-sea sediments on low activity hydrothermal area in the Central Indian Ridge. Front Mar Sci 9:784807

    Article  Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414. https://doi.org/10.1111/1462-2920.13023

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  Google Scholar 

  • Santoro AE, Buchwald C, McIlvin MR, Casciotti KL (2011) Isotopic signature of N2O produced by marine ammonia-oxidizing Archaea. Science 333:1282–1285. https://doi.org/10.1126/science.1208239

    Article  Google Scholar 

  • Santoro AE, Casciotti KL (2011) Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J 5:1796–1808. https://doi.org/10.1038/ismej.2011.58

    Article  Google Scholar 

  • Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, Yang Y, Orsi WD, Moran DM, Saito MA (2015) Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA 112:1173–1178. https://doi.org/10.1073/pnas.1416223112

    Article  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  Google Scholar 

  • Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878. https://doi.org/10.1111/1462-2920.12454

    Article  Google Scholar 

  • Son J, Pak SJ, Kim J, Baker ET, You OR, Son SK, Moon JW (2014) Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8 degrees S-17 degrees S. Geochem Geophy Geosy 15:2011–2020. https://doi.org/10.1002/2013gc005206

    Article  Google Scholar 

  • Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9:e105592. https://doi.org/10.1371/journal.pone.0105592

    Article  Google Scholar 

  • Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282. https://doi.org/10.1007/s00792-004-0386-3

    Article  Google Scholar 

  • Takai K, Nakagawa S, Reysenbach A-L, Hoek J (2006) Microbial ecology of mid-ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. American Geophysical Union, pp 185–213

    Chapter  Google Scholar 

  • Thijs S, Op De Beeck M, Beckers B, Truyens S, Stevens V, Van Hamme JD, Weyens N, Vangronsveld J (2017) Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front Microbiol 8:494. https://doi.org/10.3389/fmicb.2017.00494

    Article  Google Scholar 

  • Toner BM, Lesniewski RA, Marlow JJ, Briscoe LJ, Santelli CM, Bach W, Orcutt BN, Edwards KJ (2013) Mineralogy drives bacterial biogeography of hydrothermally inactive seafloor sulfide deposits. Geomicrobiol J 30:313–326. https://doi.org/10.1080/01490451.2012.688925

    Article  Google Scholar 

  • Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, Hashimoto J, Lilley MD, Reysenbach AL, Shank TM, Von Damm KL, Banta A, Gallant RM, Gotz D, Green D, Hall J, Harmer TL, Hurtado LA, Johnson P, McKiness ZP, Meredith C, Olson E, Pan IL, Turnipseed M, Won Y, Young CR 3rd, Vrijenhoek RC (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–823. https://doi.org/10.1126/science.1064574

    Article  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: Physical, chemical, biological, and geological interactions. American Geophysical Union, pp 222–247

    Google Scholar 

  • Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, Sievert SM, Simon J, Campbell BJ, Hanson TE, Woyke T, Klotz MG, Hugenholtz P (2017) Comparative genomic analysis of the Class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol 8:682. https://doi.org/10.3389/fmicb.2017.00682

    Article  Google Scholar 

  • Waite DW, Chuvochina MS, Hugenholtz P (2019) Road map of the Phylum Campylobacterota. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA, Whitman WB (eds) Bergey’s manual of systematics of Archaea and Bacteria. Wiley, Hoboken, pp 1–11

    Google Scholar 

  • Wang W, Li Z, Zeng L, Dong C, Shao Z (2020) The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems. ISME J 14:1994–2006. https://doi.org/10.1038/s41396-020-0662-y

    Article  Google Scholar 

  • Wang Y, Bi HY, Chen HG, Zheng PF, Zhou YL, Li JT (2022) Metagenomics reveals dominant unusual sulfur oxidizers inhabiting active hydrothermal chimneys from the Southwest Indian Ridge. Front Microbiol 13:861795. https://doi.org/10.3389/fmicb.2022.861795

    Article  Google Scholar 

  • Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, Jorgensen BB, Stepanauskas R, Reinhardt R, Schramm A, Loy A, Adrian L (2016) Single-Cell genome and group-specific dsrab sequencing implicate marine members of the class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling. Bio 7:e00266-00216. https://doi.org/10.1128/mBio.00266-16

    Article  Google Scholar 

  • Wei ZF, Li WL, Huang JM, Wang Y (2020) Metagenomic studies of SAR202 bacteria at the full-ocean depth in the Mariana Trench. Deep-Sea Res Pt I 165:103396. https://doi.org/10.1016/j.dsr.2020.103396

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: Create elegant data visualisations using the grammar of graphics. Springer-Verlag, New York, R package version

    Book  Google Scholar 

  • Willis C, Desai D, Laroche J (2019) Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett 366:fnz152. https://doi.org/10.1093/femsle/fnz152

    Article  Google Scholar 

  • Yamamoto M, Takai K (2011) Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2:192. https://doi.org/10.3389/fmicb.2011.00192

    Article  Google Scholar 

  • Yang ZF, Xiao X, Zhang Y (2020) Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge. Mar Life Sci Tech 2:73–86. https://doi.org/10.1007/s42995-019-00007-0

    Article  Google Scholar 

  • Zeng X, Alain K, Shao ZZ (2021) Microorganisms from deep-sea hydrothermal vents. Mar Life Sci Tech 3:204–230. https://doi.org/10.1007/s42995-020-00086-4

    Article  Google Scholar 

  • Zhang J, Sun QL, Zeng ZG, Chen S, Sun L (2015) Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 177:43–52. https://doi.org/10.1016/j.micres.2015.05.006

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Oceans and Fisheries Republic of Korea, as part of the project titled “Understanding the deep-sea biosphere on seafloor hydrothermal vents in the Indian Ridge” (Grant No. 20170411). We would also like to thank all the cruise members of R/V ISABU conducted by Korea Institute of Ocean Science and Technology (KIOST) in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kae Kyoung Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1348 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namirimu, T., Park, MJ., Kim, Y.J. et al. Microbial Diversity of Deep-sea Sediments from Three Newly Discovered Hydrothermal Vent Fields in the Central Indian Ridge. Ocean Sci. J. 58, 11 (2023). https://doi.org/10.1007/s12601-023-00106-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12601-023-00106-1

Keywords

Navigation