Skip to main content
Log in

Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

The Southwest Indian Ridge, which is the slowest-spreading of the main ridges, separates the African and Antarctic plates. The slow expanding rate is associated with less density of hydrothermal vent fields, shorter longevity of hydrothermal activity, cold mantle temperatures and thick lithosphere. However, the microbial communities adapting to such specific characteristics of this area have remained largely unexplored. To study the microbial diversity at the Southwest Indian Ridge, we sampled three sediment cores in a newly found inactive vent field, the Tianzuo field, and used high-throughput sequencing of 16S rRNA genes to reveal the microbial composition. Microbial communities of three sampling sites were very similar at the surface, and underwent a gradient change along depth. Gammaproteobacteria, namely Alteromonadaceae, Nitrosococcus and the JTB255 marine benthic group, were the most dominant bacterial taxa. Marine Group I was the dominant archaeal taxon in our samples. In addition, microbial populations capable of ammonia oxidation, nitrite oxidation, sulfur oxidation and manganese oxidation were detected to be the main chemolithoautotrophs. The enrichment of sulfur-oxidizing and manganese-oxidizing bacteria was observed in deep layers. When compared with other vent fields along different ocean ridges, the Tianzuo field showed distinct composition in both archaeal and bacterial communities. These results provide the first view of microbial communities of the Tianzuo field at the Southwest Indian Ridge, and give a better understanding of metabolic potential possessed by the microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF, Recous S, Roux XL (2010) Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol 12:315–326

    CAS  PubMed  Google Scholar 

  • Bachraty C, Legendre P, Desbruyères D (2009) Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep Sea Res Part I Oceanogr Res Pap 56:1371–1378

    Google Scholar 

  • Baker ET (2017) Exploring the ocean for hydrothermal venting: new techniques, new discoveries, new insights. Ore Geol Rev 86:55–69

    Google Scholar 

  • Bohu T, Akob DM, Abratis M, Lazar CS, Küsel K (2016) Biological low-pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater. Appl Environ Microbiol 8:3009–3021.

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Google Scholar 

  • Campbell BJ, Polson SW, Zeigler Allen L, Williamson SJ, Lee CK, Wommack KE, Cary SC (2013) Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Front Microbiol 4:182

    PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerqueira T, Pinho D, Egas C, Froufe H, Altermark B, Candeias C, Santos RS, Bettencourt R (2015) Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge. Mar Genomics 24:343–355

    PubMed  Google Scholar 

  • Cerqueira T, Pinho D, Froufe H, Santos RS, Bettencourt R, Egas C (2017) Sediment microbial diversity of three deep-sea hydrothermal vents southwest of the Azores. Microb Ecol 74:332–349

    CAS  PubMed  Google Scholar 

  • Cerqueira T, Barroso C, Froufe H, Egas C, Bettencourt R (2018) Metagenomic signatures of microbial communities in deep-sea hydrothermal sediments of Azores vent fields. Microb Ecol 76:387–403

    CAS  PubMed  Google Scholar 

  • Chao A, Shen TJ (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443

    Google Scholar 

  • Chen P, Zhang L, Guo X, Dai X, Liu L, Xi L, Wang J, Song L, Wang Y, Zhu Y, Huang L, Huang Y (2016) Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea sediments along the Southwest Indian Ridge. Front Microbiol 7:1340

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Tao C, Liang J, Liao S, Dong C, Li H, Li W, Wang Y, Yue X, He Y (2018) Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanol Sin 37:61–67

    CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Google Scholar 

  • Copley JT, Marsh L, Glover AG, Hühnerbach V, Nye VE, Reid WDK, Sweeting CJ, Wigham BD, Wiklund H (2016) Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. Sci Rep 6:39158

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, Evans H, Ferdelman T, Gribsholt B, Harris RN, Hoppie BryceW, Hyun J-H, Kallmeyer J, Kim J, Lynch JE, McKinley Claire C, Mitsunobu S, Morono Y, Murray RW, Pockalny R et al (2015) Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci 8:299–304

    Google Scholar 

  • Dahle H, Okland I, Thorseth IH, Pederesen RB, Steen IH (2015) Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge. ISME J 9:1593–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dick GJ, Lee YE, Tebo BM (2006) Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes. Appl Environ Microbiol 72:3184–3190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1534

    CAS  PubMed  Google Scholar 

  • Ding J, Zhang Y, Wang H, Jian H, Leng H, Xiao X (2017) Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front Microbiol 8:1012

    PubMed  PubMed Central  Google Scholar 

  • Djurhuus A, Read JF, Rogers AD (2017) The spatial distribution of particulate organic carbon and microorganisms on seamounts of the South West Indian Ridge. Deep Res Part II Topical Stud Oceanogr 136:73–84

    CAS  Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2019) PICRUSt2: an improved and extensible approach for metagenome inference. bioRxiv 1:672295. https://doi.org/10.1101/672295

  • Edlund A, Hardeman F, Jansson JK, Sjoling S (2008) Active bacterial community structure along vertical redox gradients in Baltic Sea sediment. Environ Microbiol 10:2051–2063.

    PubMed  Google Scholar 

  • Fisher CR, Takai K, Le Bris N (2007) Hydrothermal vent ecosystems vol 20. In: Oceanography, vol 1. Oceanography Society, Rockville. https://www.jstor.org/stable/24859970

  • Flores GE, Shakya M, Meneghin J, Yang ZK, Seewald JS, Geoff Wheat C, Podar M, Reysenbach AL (2012) Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin. Geobiology 10:333–346

    CAS  PubMed  Google Scholar 

  • Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, Harayama S (2009) Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J Gen Appl Microbiol 55:267–275

    CAS  PubMed  Google Scholar 

  • Füssel J, Lücker S, Yilmaz P, Nowka B, van Kessel MAHJ, Bourceau P, Hach PF, Littmann S, Berg J, Spieck E, Daims H, Kuypers MMM, Lam P (2017) Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci Adv 3:e1700807

    PubMed  PubMed Central  Google Scholar 

  • German CR (2010) Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc Natl Acad Sci 107(32):14020–14025

    CAS  PubMed  PubMed Central  Google Scholar 

  • German CR, Baker ET, Mevel C, Tamaki K, FUJI Science Team (1998) Hydrothermal activity along the southwest Indian ridge. Nature 395:490–493

    CAS  Google Scholar 

  • Handley KM, Boothman C, Mills RA, Pancost RD, Lloyd JR (2010) Functional diversity of bacteria in a ferruginous hydrothermal sediment. ISME J 4:1193–1205

    CAS  PubMed  Google Scholar 

  • Hawley AK, Nobu MK, Wright JJ, Durno WE, Morgan-Lang C, Sage B, Schwientek P, Swan BK, Rinke C, Torres-Beltran M, Mewis K, Liu WT, Stepanauskas R, Woyke T, Hallam SJ (2017) Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat Commun 8:1507

    PubMed  PubMed Central  Google Scholar 

  • Heip CH, Herman PM, Soetaert K (1998) Indices of diversity and evenness. Oceanis 24:61–88

    Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    CAS  PubMed  Google Scholar 

  • Horz HP, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki F, Hinrichs K-U, Kubo Y, Bowles MW, Heuer VB, Hong W-L, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin Y-S, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M et al (2015) Exploring deep microbial life in coal-bearing sediment down to ~ 2.5 km below the ocean floor. Science 349:420–424

    CAS  PubMed  Google Scholar 

  • Ivanova EP, Mikhailov VV (2001) A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina, and Colwellia. Microbiology 70:10–17

    CAS  Google Scholar 

  • Jahnke RA (1996) The global ocean flux of particulate organic carbon: a real distribution and magnitude. Global Biogeochem Cycles 10:71–88

    CAS  Google Scholar 

  • Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods 2:114–125

    Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1

    CAS  PubMed  Google Scholar 

  • Koch H, Lucker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner M, Daims H (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci 112:11371–11376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koops HP, Pommerening-Röser A (2015) Nitrosococcus. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken

    Google Scholar 

  • Kovaleva OL, Merkel AY, Novikov AA, Baslerov RV, Toshchakov SV, Bonch-Osmolovskaya EA (2015) Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microbiol 65:549–555

    CAS  PubMed  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhou H, Fang J, Wu Z, Peng X (2015) Microbial distribution in a hydrothermal plume of the Southwest Indian Ridge. Geomicrobiol J 33:401–415

    CAS  Google Scholar 

  • Liu S, Hu J-J, Shen J-X, Chen S, Tian G-M, Zheng P, Lou L-P, Ma F, Hu B-L (2017) Potencial correlate environmental factors leading to the niche segregation of ammonia-oxidizing archaea and ammonia-oxidizing bacteria: a review. Appl Environ Biotechnol 2:11–19

    CAS  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272

    CAS  PubMed  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    PubMed  PubMed Central  Google Scholar 

  • Mahmoudi N, Robeson MS, 2nd, Castro HF, Fortney JL, Techtmann SM, Joyner DC, Paradis CJ, Pfiffner SM, Hazen TC (2015) Microbial community composition and diversity in Caspian Sea sediments. FEMS Microbiol Ecol 91:1–11

    PubMed  Google Scholar 

  • Meyer S, Wegener G, Lloyd KG, Teske A, Boetius A, Ramette A (2013) Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Front Microbiol 4:207

    PubMed  PubMed Central  Google Scholar 

  • Münch U, Lalou C, Halbach P, Fujimoto H (2001) Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E—mineralogy, chemistry and chronology of sulfide samples. Chem Geol 177:341–349

    Google Scholar 

  • Mussmann M, Pjevac P, Kruger K, Dyksma S (2017) Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J 11:1276–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naeem S (2009) Gini in the bottle. Nature 458:579

    CAS  PubMed  Google Scholar 

  • Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB, Kikuchi T, Kazama H, Hosoi-Tanabe S, Nakamura K, Kinoshita M, Hirayama H, Inagaki F, Tsunogai U, Ishibashi J, Takai K (2010) Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa trough. Appl Environ Microbiol 76:1198–1211

    CAS  PubMed  Google Scholar 

  • Opatkiewicz AD, Butterfield DA, Baross JA (2009) Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities. FEMS Microbiol Ecol 70:413–424

    CAS  PubMed  Google Scholar 

  • Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR, Swan BK, Mathyer ME, Hallam SJ, Lopez-Garcia P, Takaki Y (2017) Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358:1046–1051

    CAS  PubMed  Google Scholar 

  • Peng X, Chen S, Zhou H, Zhang L, Wu Z, Li J, Li J, Xu H (2011) Diversity of biogenic minerals in low-temperature Si-rich deposits from a newly discovered hydrothermal field on the ultraslow spreading Southwest Indian Ridge. J Geophys Res Biogeosci 116(G3):G03030

    Google Scholar 

  • Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, McGlinchey RP, Foster B, Lapidus A, Podell S, Allen EE, Moore BS, Jensen PR (2009) Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J 3:1193–1203

    CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    CAS  PubMed  Google Scholar 

  • Ricotta C, Avena G (2003) On the relationship between Pielou’s evenness and landscape dominance within the context of Hill’s diversity profiles. Ecol Ind 2:361–365

    Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    PubMed  PubMed Central  Google Scholar 

  • Roussel EG, Konn C, Charlou JL, Donval JP, Fouquet Y, Querellou J, Prieur D, Bonavita MA (2011) Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol Ecol 77:647–665

    CAS  PubMed  Google Scholar 

  • Sabirova JS, Cloetens L, Vanhaecke L, Forrez I, Verstraete W, Boon N (2008) Manganese-oxidizing bacteria mediate the degradation of 17α-ethinylestradiol. Microb Biotechnol 1:507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter D, Cannat M, Rouméjon S, Andreani M, Birot D, Bronner A, Brunelli D, Carlut J, Delacour A, Guyader V, MacLeod CJ, Manatschal G, Mendel V, Ménez B, Pasini V, Ruellan E, Searle R (2013) Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat Geosci 6:314–320

    CAS  Google Scholar 

  • Sinha RK, Krishnan KP, Thomas FA, Binish MB, Mohan M, Kurian PJ (2019) Polyphasic approach revealed complex bacterial community structure and function in deep sea sediment of ultra-slow spreading Southwest Indian Ridge. Ecol Ind 96:40–51

    CAS  Google Scholar 

  • Storesund JE, Ovreas L (2013) Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek 104:569–584

    CAS  PubMed  Google Scholar 

  • Storesund JE, Lanzen A, Garcia-Moyano A, Reysenbach AL, Ovreas L (2018) Diversity patterns and isolation of Planctomycetes associated with metalliferous deposits from hydrothermal vent fields along the Valu Fa Ridge (SW Pacific). Antonie Van Leeuwenhoek 111:841–858

    CAS  PubMed  Google Scholar 

  • Tao C, Wu G, Ni J, Zhao H, Su X, Zhou N, Li J, Chen YJ, Cui R, Deng X, Egorov I, Dobretsova IG, Sun G, Qiu Z, Deng X, Zhou J, Gu C, Li J, Yang J, Zhang K et al (2009) New hydrothermal fields found along the SWIR during the Legs 5-7 of the Chinese DY115-20 expedition. In: AGU fall meeting, San Francisco

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13:421–428

    CAS  PubMed  Google Scholar 

  • Tourna M, Maclean P, Condron L, O’Callaghan M, Wakelin SA (2014) Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol Ecol 88:538–549

    CAS  PubMed  Google Scholar 

  • Voordouw G (1992) Evolution of hydrogenase genes. In: Advances in inorganic chemistry, vol 38. Academic Press, New York, pp 397–422

    Google Scholar 

  • Vuillemin A, Ariztegui D, Horn F, Kallmeyer J, Orsi WD, Team PS (2018) Microbial community composition along a 50,000-year lacustrine sediment sequence. FEMS Microbiol Ecol 94:fiy029

    PubMed Central  Google Scholar 

  • Wang L, Cheung MK, Kwan HS, Hwang JS, Wong CK (2015) Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. J Basic Microbiol 55:1308–1318

    PubMed  Google Scholar 

  • Yamamoto M, Takai K (2011) Sulfur metabolisms in epsilon- and gamma-proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Kang M, Xu J, Xu J, Shuai Y, Zhou X, Yang Z, Ma K (2016) Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge. Sci Rep 6:25982

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (41530967, 41776173, 41576129) and the National Key Research and Development Program of China (2016YFC03007). We acknowledge the crew of the Dayang 35th cruise.

Author information

Authors and Affiliations

Authors

Contributions

XX and YZ designed the experiments and collected the samples. ZY performed the experiments and analyzed the data. ZY, XX and YZ wrote the paper. The final manuscript was approved by all the authors

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Chengchao Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xiao, X. & Zhang, Y. Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge. Mar Life Sci Technol 2, 73–86 (2020). https://doi.org/10.1007/s42995-019-00007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-019-00007-0

Keywords

Navigation