Skip to main content
Log in

SnS2 nanosheets decorated SnO2 hollow multishelled nanostructures for enhanced sensing of triethylamine gas

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

基于SnO2的高灵敏度、快速和低温检测三乙胺(TEA)气体具有吸引力, 但仍然具有挑战性。本文设计了基于SnS2纳米片/SnO2中空多壳结构(HoMSs)的传感器, 首先合成SnO2中空多壳结构, 然后用硫代乙酰胺原位硫化。通过改变硫代乙酰胺的量, 获得了不同SnS2含量的SnS2/SnO2异质结构, 并对其TEA气敏性能进行了研究。SnS2/SnO2-2传感器(在水热过程中使用0.3 g硫代乙酰胺)具有较大的比表面积、紧密的界面接触和最大的异质结协同效应, 在相对较低的160 °C温度下, 对100 ppm TEA的响应率为76, 响应/恢复时间为84/101 s。此外, 传感器响应与气体浓度呈线性关系, 对干扰气体的响应可以忽略不计。此外, 结构良好的SnS2/SnO2-2在长期测试后仍保持稳定的性能。这项工作提供了一种结合形态学设计和异质结结构的简便方法, 为开发更先进的气体传感器铺平了道路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

References

  1. Liu JJ, Zhang LY, Fan JJ, Yu JG. Semiconductor gas sensor for triethylamine detection. Small. 2022;18(11):2104984. https://doi.org/10.1002/smll.202104984.

    Article  CAS  Google Scholar 

  2. Zhang MX, Liu K, Zhang XM, Wang BB, Xu XR, Du XX, Yang C, Zhang KW. Interfacial energy barrier tuning of hierarchical Bi2O3/WO3 heterojunctions for advanced triethylamine sensor. J Adv Ceram. 2022;11(12):1860. https://doi.org/10.1007/s40145-022-0652-9.

    Article  CAS  Google Scholar 

  3. Wu KD, Debliquy M, Zhang C. Metal–oxide–semiconductor resistive gas sensors for fish freshness detection. Compr Rev Food Sci Food Saf. 2023;22(2):913. https://doi.org/10.1111/1541-4337.13095.

    Article  CAS  PubMed  Google Scholar 

  4. Gu FB, Cui YZ, Han DM, Hong S, Flytzani-Stephanopoulos M, Wang ZH. Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl Catal B Environ. 2019;256:117809. https://doi.org/10.1016/j.apcatb.2019.117809.

    Article  CAS  Google Scholar 

  5. Shuai YT, Peng R, He YZ, Liu XY, Wang XM, Guo WW. NiO/BiVO4 p-n heterojunction microspheres for conductometric triethylamine gas sensors. Sens Actuators B Chem. 2023;384: 133625. https://doi.org/10.1016/j.snb.2023.133625.

    Article  CAS  Google Scholar 

  6. Zhang S, Song P, Wang Q, Ding YL. Ultra-sensitive triethylamine gas sensor based on ZnO/MoO3 heterostructures with ppb level detection. Sens Actuators B Chem. 2023;379: 133239. https://doi.org/10.1016/j.snb.2022.133239.

    Article  CAS  Google Scholar 

  7. Ou LX, Liu MY, Zhu LY, Zhang DW, Lu HL. Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano Micro Lett. 2022;14(1):206. https://doi.org/10.1007/s40820-022-00956-9.

    Article  CAS  Google Scholar 

  8. Gai LY, Lai RP, Dong XH, Wu X, Luan QT, Wang J, Lin HF, Ding WH, Wu GL, Xie WF. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022;41(6):1818. https://doi.org/10.1007/s12598-021-01937-4.

    Article  CAS  Google Scholar 

  9. Yuan ZY, Yang F, Zhu HM, Meng FL, Ibrahim M. High-response n-butanol gas sensor based on ZnO/In2O3 heterostructure. Rare Met. 2023;42(1):198. https://doi.org/10.1007/s12598-022-02162-3.

    Article  CAS  Google Scholar 

  10. Masuda Y. Recent advances in SnO2 nanostructure based gas sensors. Sens Actuators B Chem. 2022;364:131876. https://doi.org/10.1016/j.snb.2022.131876.

    Article  CAS  Google Scholar 

  11. Domènech-Gil G, Samà J, Fàbrega C, Gràcia I, Cané C, Barth S, Romano-Rodríguez A. Highly sensitive SnO2 nanowire network gas sensors. Sens Actuat B Chem. 2023;383:133545. https://doi.org/10.1016/j.snb.2023.133545.

    Article  CAS  Google Scholar 

  12. Xiong Y, Lin YQ, Wang XZ, Zhao Y, Tian J. Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances. Adv Powder Mater. 2022;1(3):100033. https://doi.org/10.1016/j.apmate.2022.02.001.

    Article  Google Scholar 

  13. Xu HY, Chen ZR, Liu CY, Ye Q, Yang XP, Wang JQ, Cao BQ. Preparation of 200 crystal faced SnO2 nanorods with extremely high gas sensitivity at lower temperature. Rare Met. 2021;40(8):2004. https://doi.org/10.1007/s12598-021-01720-5.

    Article  CAS  Google Scholar 

  14. Wang Z, Bu MM, Hu N, Zhao LB. An overview on room-temperature chemiresistor gas sensors based on 2D materials: research status and challenge. Compos B. 2023;248: 110378. https://doi.org/10.1016/j.compositesb.2022.110378.

    Article  CAS  Google Scholar 

  15. Han YT, Huang D, Ma YJ, He GL, Hu J, Zhang J, Hu NT, Su YJ, Zhou ZH, Zhang YF, Yang Z. Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl Mater Interfaces. 2018;10:22640. https://doi.org/10.1021/acsami.8b05811.

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Zhao YT, Song P, Yang ZX, Wang Q. ppb level triethylamine detection of yolk-shell SnO2/Au/Fe2O3 nanoboxes at low-temperature. Appl Surf Sci. 2019;476:391. https://doi.org/10.1016/j.apsusc.2019.01.110.

    Article  CAS  Google Scholar 

  17. Zou YH, Chen S, Sun J, Liu JQ, Che YK, Liu XH, Zhang J, Yang DJ. Highly efficient gas sensor using a hollow SnO2 microfiber for triethylamine detection. ACS Sensors. 2017;2(7):897. https://doi.org/10.1021/acssensors.7b00276.

    Article  CAS  PubMed  Google Scholar 

  18. Wei YZ, Yang NL, Huang KK, Wan JW, You FF, Yu RB, Feng SH, Wang D. Steering hollow multishelled structures in photocatalysis: optimizing surface and mass transport. Adv Mater. 2020;32(44):2002556. https://doi.org/10.1002/adma.202002556.

    Article  CAS  Google Scholar 

  19. Bing YF, Liu C, Qiao L, Zeng Y, Yu SS, Liang ZZ, Liu JP, Luo JZ, Zheng WT. Multistep synthesis of non-spherical SnO2@SnO2 yolk-shell cuboctahedra with nanoparticle-assembled porous structure for toluene detection. Sens Actuators B Chem. 2016;231:365. https://doi.org/10.1016/j.snb.2016.03.048.

    Article  CAS  Google Scholar 

  20. He P, Fu HT, Gong YL, Chen J, Yang XH, Han DZ, Xiong SX, Li S, An XZ. SnO2@ZnS core-shell hollow spheres with enhanced room-temperature gas-sensing performance. Sens Actuators B Chem. 2023;388:133809. https://doi.org/10.1016/j.snb.2023.133809.

    Article  CAS  Google Scholar 

  21. Wang P, Song T, Gao GG, Matras-Postolek K, Yang P. SnO2 clusters embedded in TiO2 nanosheets: heterostructures and gas sensing performance. Sens Actuators B Chem. 2022;357: 131433. https://doi.org/10.1016/j.snb.2022.131433.

    Article  CAS  Google Scholar 

  22. Meng XN, Bi MS, Xiao QP, Gao W. Ultrasensitive gas sensor based on Pd/SnS2/SnO2 nanocomposites for rapid detection of H2. Sens Actuators B Chem. 2022;359:131612. https://doi.org/10.1016/j.snb.2022.131612.

    Article  CAS  Google Scholar 

  23. Kwon KC, Suh JM, Lee TH, Choi KS, Hong K, Song YG, Shim YS, Shokouhimehr M, Kang CY, Kim SY, Jang HW. SnS2 nanograins on porous SiO2 nanorods template for highly sensitive NO2 sensor at room temperature with excellent recovery. ACS Sensors. 2019;4(3):678. https://doi.org/10.1021/acssensors.8b01526.

    Article  CAS  PubMed  Google Scholar 

  24. Gu D, Li XG, Zhao YY, Wang J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens Actuators B Chem. 2017;244:67. https://doi.org/10.1016/j.snb.2016.12.125.

    Article  CAS  Google Scholar 

  25. Chang K, Hai X, Ye JH. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv Energy Mater. 2016;6(10):1502555. https://doi.org/10.1002/aenm.201502555.

    Article  CAS  Google Scholar 

  26. Hao JY, Zhang D, Sun Q, Zheng SL, Sun JY, Wang Y. Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale. 2018;10(15):7210. https://doi.org/10.1039/c8nr01379a.

    Article  CAS  PubMed  Google Scholar 

  27. Liu D, Tang ZL, Zhang ZT. Visible light assisted room-temperature NO2 gas sensor based on hollow SnO2@SnS2 nanostructures. Sens Actuators B Chem. 2020;324:128754. https://doi.org/10.1016/j.snb.2020.128754.

    Article  CAS  Google Scholar 

  28. Sun XM, Li YD. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem. 2004;116:607. https://doi.org/10.1002/ange.200352386.

    Article  Google Scholar 

  29. Mao D, Wan JW, Wang JY, Wang D. Sequential templating approach: sequential templating approach: a groundbreaking strategy to create hollow multishelled structures. Adv Mater. 2019;31(38):1970274. https://doi.org/10.1002/adma.201970274.

    Article  CAS  Google Scholar 

  30. Yang XL, Yu Q, Zhang SF, Sun P, Lu HY, Yan X, Liu FM, Zhou X, Liang XH, Gao Y, Lu GY. Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sens Actuators B Chem. 2018;266:213. https://doi.org/10.1016/j.snb.2018.03.044.

    Article  CAS  Google Scholar 

  31. Hu J, Wang T, Wang YJ, Huang D, He GL, Han YT, Hu NT, Su YJ, Zhou ZH, Zhang YF, Yang Z. Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sens Actuators B Chem. 2018;263:120. https://doi.org/10.1016/j.snb.2018.02.035.

    Article  CAS  Google Scholar 

  32. Wu J, Zhao R, Xiang H, Yang CF, Zhong WD, Zhang CZ, Zhang Q, Li XK, Yang NJ. Exposing highly active (100) facet on a SnS2/SnO2 electrocatalyst to boost efficient hydrogen evolution. Appl Catal B Environ. 2021;292: 120200. https://doi.org/10.1016/j.apcatb.2021.120200.

    Article  CAS  Google Scholar 

  33. Mashock M, Yu KH, Cui SM, Mao S, Lu GH, Chen JH. Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p-n junctions on their surfaces. ACS Appl Mater Interfaces. 2012;4:4192. https://doi.org/10.1021/am300911z.

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Chu SS, Ma Q, Fang Y, Wang JP, Che QD, Wang G, Yang P. Novel construction of morphology-tunable C-N/SnO2/ZnO/Au microspheres with ultrasensitivity and high selectivity for triethylamine under various temperature detections. ACS Appl Mater Interfaces. 2019;11(8):8601. https://doi.org/10.1021/acsami.8b22357.

    Article  CAS  PubMed  Google Scholar 

  35. Chang X, Qiao XR, Li K, Wang P, Xiong Y, Li XF, Xia FJ, Xue QZ. UV assisted ppb-level acetone detection based on hollow ZnO/MoS2 nanosheets core/shell heterostructures at low temperature. Sens Actuators B Chem. 2020;317: 128208. https://doi.org/10.1016/j.snb.2020.128208.

    Article  CAS  Google Scholar 

  36. Xu HY, Ju JDX, Li WR, Zhang J, Wang JQ, Cao BQ. Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes. Sens Actuators B Chem. 2016;228:634. https://doi.org/10.1016/j.snb.2016.01.059.

    Article  CAS  Google Scholar 

  37. Xu HY, Ju DX, Chen ZR, Han R, Zhai T, Yu HQ, Liu CY, Wu XW, Wang JQ, Cao BQ. A novel hetero-structure sensor based on Au/Mg-doped TiO2/SnO2 nanosheets directly grown on Al2O3 ceramic tubes. Sens Actuators B Chem. 2018;273:328. https://doi.org/10.1016/j.snb.2018.06.055.

    Article  CAS  Google Scholar 

  38. Lou CM, Li ZS, Yang C, Liu XH, Zheng W, Zhang J. Rational design of ordered porous SnO2/ZrO2 thin films for fast and selective triethylamine detection with humidity resistance. Sens Actuators B Chem. 2021;333:129572. https://doi.org/10.1016/j.snb.2021.129572.

    Article  CAS  Google Scholar 

  39. Ju DX, Xu HY, Xu Q, Gong HB, Qiu ZW, Guo J, Zhang J, Cao BQ. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens Actuators B Chem. 2015;215:39. https://doi.org/10.1016/j.snb.2015.03.015.

    Article  CAS  Google Scholar 

  40. Xu HY, Li WR, Han R, Zhai T, Yu HQ, Chen ZR, Wu XW, Wang JQ, Cao BQ. Enhanced triethylamine sensing properties by fabricating Au@SnO2/α-Fe2O3 core-shell nanoneedles directly on alumina tubes. Sens Actuators B Chem. 2018;262:70. https://doi.org/10.1016/j.snb.2018.01.209.

    Article  CAS  Google Scholar 

  41. Tomer VK, Devi ST, Malik R, Nehra SP, Duhan S. Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3-SnO2 nanohybrids. Sens Actuators B Chem. 2016;229:321. https://doi.org/10.1016/j.snb.2016.01.124.

    Article  CAS  Google Scholar 

  42. Li WR, Xu HY, Zhai T, Yu HQ, Chen ZR, Qiu ZW, Song XP, Wang JQ, Cao BQ. Enhanced triethylamine sensing properties by designing Au@SnO2/MoS2 nanostructure directly on alumina tubes. Sens Actuators B Chem. 2017;253:97. https://doi.org/10.1016/j.snb.2017.05.174.

    Article  CAS  Google Scholar 

  43. Meng LL, Bu WY, Li YL, Qin QX, Zhou ZJ, Hu CH, Chuai XH, Wang CG, Sun P, Lu GY. Highly selective triethylamine sensing based on SnO/SnO2 nanocomposite synthesized by one-step solvothermal process and sintering. Sens Actuators B Chem. 2021;342: 130018. https://doi.org/10.1016/j.snb.2021.130018.

    Article  CAS  Google Scholar 

  44. Li H, Guo J, Chu SS, Li H, Zhang Q, Lin ZQ, Ma Q. Construction of C-N/SnO2/Co3O4 microspheres with improvable electronic transmission for enhanced triethylamine gas-sensing performance. Phys Lett A. 2021;387:127023. https://doi.org/10.1016/j.physleta.2020.127023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51872173 and 52202176), the Natural Science Foundation of Shandong Province (Nos. ZR2022JQ21and ZR2021QE092), the Opening Fund of State Key Laboratory of Heavy Oil Processing (No. SKLOP202002006), Higher School Youth Innovation Team of Shandong Province (No. 2019KJA013) and Science and Technology Special Project of Qingdao City (No. 20-3-4-3-nsh). The authors also gratefully acknowledge shiyanjia Lab (www.shiyanjia.com) for the support of XPS test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Xiong, Xin-Zhen Wang or Jian Tian.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WD., Xiong, Y., Shen, A. et al. SnS2 nanosheets decorated SnO2 hollow multishelled nanostructures for enhanced sensing of triethylamine gas. Rare Met. 43, 2339–2348 (2024). https://doi.org/10.1007/s12598-023-02603-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02603-7

Navigation