Skip to main content
Log in

Recent progress of Pt-based oxygen reduction reaction catalysts for proton exchange membrane fuel cells

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the increasing consumption of fossil fuels, proton exchange membrane fuel cells (PEMFCs) have attracted considerable attention as green and sustainable energy conversion devices. The slow kinetics of the cathodic oxygen reduction reaction (ORR) has a major impact on the performance of PEMFCs, and although platinum (Pt) can accelerate the reaction rate of the ORR, the scarcity and high cost of Pt resources still limit the development of PEMFCs. Therefore, the development of low-cost high-performance ORR catalysts is essential for the commercial application and development of PEMFCs. This paper reviews the research progress of researchers on Pt-based ORR catalysts in recent years, including Pt/C catalysts, Pt-based alloy catalysts, Pt-based intermetallic compounds, and Pt-based single-atom catalysts (SACs), with a focus on Pt-based alloy catalysts with different nanostructures. We described in detail the difficulties and solutions in the research process of various ORR catalysts and explained the principle of their activity enhancement with density functional theory (DFT). In addition, an outlook on the development of Pt-based catalysts is given, and reducing the amount of Pt used and improving the performance of catalysts are the directions to work on in the coming period.

Graphical abstract

摘要

由于化石能源的加速消耗和日趋严重的环境问题, 质子交换膜燃料电池(PEMFCs)作为绿色可持续发展的能源转换装置引起了极大的关注。缓慢的阴极氧还原反应(ORR)动力学严重影响PEMFCs的性能, 虽然Pt可以加速ORR反应速率, 但是Pt资源的稀缺和昂贵的成本仍然限制了PEMFCs的发展。所以研究出低成本、高性能的ORR催化剂对于PEMFCs的商业化应用和发展至关重要。本文综述了近年来科研人员对于Pt基ORR催化剂的研究, 包括Pt/C催化剂、Pt基合金催化剂、Pt基金属间化合物、Pt基单原子催化剂, 其中重点讨论了不同纳米结构的Pt基合金催化剂。我们详细描述了各种ORR催化剂研究过程中的困难和解决办法, 并用密度泛函理论 (DFT) 解释了其活性提升的原理。此外, 还对Pt基催化剂的发展提出了展望, 开发低Pt、高效、稳定、经济和环保催化剂是今后一段时间需要努力的方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [39]. Copyright 2022, American Chemical Society. d SEM images of graphene-Pt/C composites before and after cycling; e plot of ECSA versus number of turns obtained for catalysts cycled to 30,000 turns before and after Pickering emulsion treatment at between 0.60 and 0.95 V (vs. RHE). Reproduced with permission from Ref. [40]. Copyright 2022, John Wiley and Sons. f Pt-CNT@SnO2-T synthetic route schematic diagram; g valence band XPS spectrum of Pt-CNT@SnO2-T, where black dashed line indicates location of d-band center. Reproduced with permission from Ref. [59]. Copyright 2022, Elsevier

Fig. 2

Reproduced with permission from Ref. [104]. Copyright 2020, American Chemical Society. c HAADF-STEM image of Pt-Ni UHT; d schematic diagram of ORR catalytic layer of UHT for PEMFCs; e FFT results of Pt-Ni UHT. Reproduced with permission from Ref. [108]. Copyright 2022, American Chemical Society. DFT calculation results for f PtFe NW, g PtFe/Pt-V NW, and h PtFe/Pt NW for adsorption energy of oxygen-based intermediates; i activity volcano curve of PtFe/Pt NW. Reproduced with permission from Ref. [109]. Copyright 2021, Royal Society of Chemistry. J HAADF-STEM and EDS images of Pt-Co GB-NWs/C-OCP and Pt-Co SC-NWs; k dissolved amounts of Pt and Co during activation and durability test of Pt-Co GB-NWs/C-OCP and Pt-Co SC-NWs/C, where dissolved amounts have been normalized to total metal loading. Reproduced with permission from Ref. [110]. Copyright 2022, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [113]. Copyright 2020, American Chemical Society. e Schematic diagram of synthesis of fct-Pt-Co@Pt octahedral nanocrystal catalyst with an ultra-thin Pt layer; f MA of catalysts at 0.9 V vs. RHE before and after different cycles of ADT. Reproduced with permission from Ref. [114]. Copyright 2021, American Chemical Society. g–j HAADF-STEM images and corresponding EDS elemental mapping of Pt-Ni PNCs; k, l line-scanning analysis along yellow and blue arrows in g, where arrows represent Ni scarcity; m MA and SA of Pt-Ni PNCs, Pt-Ni NWCs, and Pt-Ni PNs at 0.9 V vs. RHE (calculated from catalysts performing CV in Ar-saturated 0.1 mol·L−1 HClO4 and LSV in O2-saturated 0.1 mol·L−1 HClO4). Reproduced with permission from Ref. [118]. Copyright 2022, John Wiley and Sons. DFT-determined correlation of n overpotential and o atomic O binding energy relative to Pt (111) with coordination number of surface sites on each crystal plane during ORR. Reproduced with permission from Ref. [119]. Copyright 2022, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [124]. Copyright 2022, Advanced Science. g Lattice spacing calculation for Pt-Cu-Mn UNFs (left) and Pt-Cu-Mn PNFs (right); h MA and SA at 0.9 V vs. RHE obtained by RDE testing of Pt-Cu-Mn UNFs, Pt-Cu-Mn PNFs and commercial samples in 0.1 mol·L−1 KOH solution. Reproduced with permission from Ref. [126]. Copyright 2020, john Wiley and Sons. i MA of PtCo-ND-NF at 0.9 V vs. RHE before and after ADT in 0.1 mol·L−1 HClO4 solution; j schematic diagram of synthesis of PtCo-ND-NF. Reproduced with permission from Ref. [125]. Copyright 2021, Elsevier

Fig. 5

Reproduced with permission from Ref. [140]. Copyright 2022, Elsevier. d Schematic diagram of kinetic energy barrier for transition from atomic disorder to atomic order; e cathodic MA of membrane electrode assemblies (MEAs) made with cathode catalysts of Pt/C and i-NP catalysts; f Fourier-transformed EXAFS data at Pt L3-edge of Pt3Co/S-C-600, Pt3Co/S-C-1000, and PtS2; g XPS spectra of Pt3Co/S-C-600 and S-C, indicating electronic interaction between metals and S-C, where a.u. is arbitrary units. Reproduced with permission from Ref. [143]. Copyright 2021, the American Association for the Advancement of Science. h PDOS of Pt and Pt1Co1-IMC@Pt. Reproduced with permission from Ref. [146]. Copyright 2022, Royal Society of Chemistry

Fig. 6

Reproduced with permission from Ref. [154]. Copyright 2021, John Wiley and Sons. d Schematic illustration for synthetic process of Pt1Con/N-GCNT encapsulated in a graphitic carbon nanotube; proposed ORR mechanism of e Pt1Co100/N-GCNT and f Pt2Co100/N-GCNT (gray, carbon; purple, cobalt; orange, platinum; red, oxygen; blue, hydrogen). Reproduced with permission from Ref. [155]. Copyright 2022, Elsevier. g Free energy diagram of different catalyst models; proposed ORR mechanisms based on h Pt3Co/in-plane Pt model and i Pt3Co/edged Pt model. Reproduced with permission from Ref. [157]. Copyright 2022, American Chemical Society

Similar content being viewed by others

References

  1. Li J, Zhang L, Doyle-Davis K, Li R, Sun X. Recent advances and strategies in the stabilization of single-atom catalysts for electrochemical applications. Carbon Energy. 2020;2(4):488. https://doi.org/10.1002/cey2.74.

    Article  CAS  Google Scholar 

  2. Xu X, Zhang Y, Miao X. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

  3. Zhang Z, Lei Y, Huang W. Recent progress in carbon-based materials boosting electrochemical water splitting. Chin Chem Lett. 2022;33(8):3623. https://doi.org/10.1016/j.cclet.2021.11.041.

    Article  CAS  Google Scholar 

  4. Arunachalam S, Kirubasankar B, Pan D, Liu H, Yan C, Guo Z, Angaiah S. Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. 2020;5(3):259. https://doi.org/10.1016/j.gee.2020.07.021.

    Article  Google Scholar 

  5. Wan H, Ma W, Zhou K, Cao Y, Liu X, Ma R. Advanced silicon nanostructures derived from natural silicate minerals for energy storage and conversion. Green Energy Environ. 2022;7(2):205. https://doi.org/10.1016/j.gee.2021.04.001.

    Article  CAS  Google Scholar 

  6. Pan Y, Deng FF, Fang Z, Chen HJ, Long Z, Hou XD. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds. Chin Chem Lett. 2021;32(11):3440. https://doi.org/10.1016/j.cclet.2021.05.067.

    Article  CAS  Google Scholar 

  7. Tian X, Lu XF, Xia BY, Lou XW. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule. 2020;4(1):45. https://doi.org/10.1016/j.joule.2019.12.014.

    Article  CAS  Google Scholar 

  8. Wang K, Li N, Yang Y, Ke S, Zhang Z, Dou M, Wang F. Effect of load-cycling amplitude on performance degradation for proton exchange membrane fuel cell. Chin Chem Lett. 2021;32(10):3159. https://doi.org/10.1016/j.cclet.2021.02.045.

    Article  CAS  Google Scholar 

  9. Wang Y, Ruiz Diaz DF, Chen KS, Wang Z, Adroher XC. Materials, technological status, and fundamentals of PEM fuel cells – a review. Mater Today. 2020;32:178. https://doi.org/10.1016/j.mattod.2019.06.005.

    Article  CAS  Google Scholar 

  10. Zhang J, Yuan Y, Gao L, Zeng G, Li M, Huang H. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv Mater. 2021;33(20):2006494. https://doi.org/10.1002/adma.202006494.

    Article  CAS  Google Scholar 

  11. Huang L, Zaman S, Tian X, Wang Z, Fang W, Xia BY. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc Chem Res. 2021;54(2):311. https://doi.org/10.1021/acs.accounts.0c00488.

    Article  CAS  PubMed  Google Scholar 

  12. Li CJ, Shan GC, Guo CX, Ma RG. Design strategies of Pd-based electrocatalysts for efficient oxygen reduction. Rare Met. 2023;42(6):1778. https://doi.org/10.1039/d0ta09092a.

    Article  CAS  Google Scholar 

  13. Dong M, Liu X, Jiang L, Zhu Z, Shu Y, Chen S, Dou Y, Liu P, Yin H, Zhao H. Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Green Energy Environ. 2020;5(4):499. https://doi.org/10.1016/j.gee.2020.06.022.

    Article  CAS  Google Scholar 

  14. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  15. Li S, Ho SH, Hua T, Zhou Q, Li F, Tang J. Sustainable biochar as an electrocatalysts for the oxygen reduction reaction in microbial fuel cells. Green Energy Environ. 2021;6(5):644. https://doi.org/10.1016/j.gee.2020.11.010.

    Article  CAS  Google Scholar 

  16. Chen L, Xu X, Yang W, Jia J. Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chin Chem Lett. 2020;31(3):626. https://doi.org/10.1016/j.cclet.2019.08.008.

    Article  CAS  Google Scholar 

  17. Liu M, Xiao X, Li Q, Luo L, Ding M, Zhang B, Li Y, Zou J, Jiang B. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J Colloid Interface Sci. 2022;607:791. https://doi.org/10.1016/j.jcis.2021.09.008.

    Article  CAS  PubMed  Google Scholar 

  18. Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev. 2016;116(6):3594. https://doi.org/10.1021/acs.chemrev.5b00462.

    Article  CAS  PubMed  Google Scholar 

  19. Shi Z, Yang W, Gu Y, Liao T, Sun Z. Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv Sci. 2020;7(15):2001069. https://doi.org/10.1002/advs.202001069.

    Article  CAS  Google Scholar 

  20. Yang G, Choi W, Pu X, Yu C. Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C–N–Fe coordination for oxygen reduction reaction. Energy Environ Sci. 2015;8(6):1799. https://doi.org/10.1039/c5ee00682a.

    Article  CAS  Google Scholar 

  21. Wang J, Kong H, Zhang J, Hao Y, Shao Z, Ciucci F. Carbon-based electrocatalysts for sustainable energy applications. Prog Mater Sci. 2021;116:100717. https://doi.org/10.1016/j.pmatsci.2020.100717.

    Article  CAS  Google Scholar 

  22. Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. Metal-free heteroatom-doped carbon-based catalysts for ORR: a critical assessment about the role of heteroatoms. Carbon. 2020;165:434. https://doi.org/10.1016/j.carbon.2020.04.068.

    Article  CAS  Google Scholar 

  23. Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B. Current progress and performance improvement of Pt/C catalysts for fuel cells. J Mater Chem A. 2020;8(46):24284. https://doi.org/10.1039/d0ta08312g.

    Article  CAS  Google Scholar 

  24. Duan X, Cao F, Ding R, Li X, Li Q, Aisha R, Zhang S, Hua K, Rui Z, Wu Y, Li J, Li A, Liu J. Cobalt-doping stabilized active and durable sub-2 nm Pt Nanoclusters for low-Pt-loading PEMFC cathode. Adv Energy Mater. 2022;12(13):2103144. https://doi.org/10.1002/aenm.202103144.

    Article  CAS  Google Scholar 

  25. Jiménez-Morales I, Reyes-Carmona A, Dupont M, Cavaliere S, Rodlert M, Mornaghini F, Larsen MJ, Odgaard M, Zajac J, Jones DJ, Rozière J. Correlation between the surface characteristics of carbon supports and their electrochemical stability and performance in fuel cell cathodes. Carbon Energy. 2021;3(4):654. https://doi.org/10.1002/cey2.109.

    Article  CAS  Google Scholar 

  26. Zhao Z, Liu Z, Zhang A, Yan X, Xue W, Peng B, Xin HL, Pan X, Duan X, Huang Y. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat Nanotechnol. 2022;17(9):968. https://doi.org/10.1038/s41565-022-01170-9.

    Article  CAS  PubMed  Google Scholar 

  27. Xiong Y, Yang Y, DiSalvo FJ, Abruna HD. Synergistic Bimetallic metallic organic framework-derived Pt-Co oxygen reduction electrocatalysts. ACS Nano. 2020;14(10):13069. https://doi.org/10.1021/acsnano.0c04559.

    Article  CAS  PubMed  Google Scholar 

  28. Song Z, Zhu YN, Liu H, Banis MN, Zhang L, Li J, Doyle-Davis K, Li R, Sham TK, Yang L, Young A, Botton GA, Liu LM, Sun X. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small. 2020;16(43):2003096. https://doi.org/10.1002/smll.202003096.

    Article  CAS  Google Scholar 

  29. Ren X, Lv Q, Liu L, Liu B, Wang Y, Liu A, Wu G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy Fuels. 2020;4(1):15. https://doi.org/10.1039/c9se00460b.

    Article  CAS  Google Scholar 

  30. Cheng Q, Hu C, Wang G, Zou Z, Yang H, Dai L. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J Am Chem Soc. 2020;142(12):5594. https://doi.org/10.1021/jacs.9b11524.

    Article  CAS  PubMed  Google Scholar 

  31. Aftabuzzaman M, Shamsuddin Ahmed M, Matyjaszewski K, Kyu KH. Nanocrystal co-existed highly dense atomically disperse Pt@3D-hierarchical porous carbon electrocatalysts for tri-iodide and oxygen reduction reactions. Chem Eng J. 2022;446:137249. https://doi.org/10.1016/j.cej.2022.137249.

    Article  CAS  Google Scholar 

  32. Jauhar AM, Ma Z, Xiao M, Jiang G, Sy S, Li S, Yu A, Chen Z. Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability. J Power Sources. 2020;473:228607. https://doi.org/10.1016/j.jpowsour.2020.228607.

    Article  CAS  Google Scholar 

  33. Zhong H, Alberto Estudillo-Wong L, Gao Y, Feng Y, Alonso-Vante N. Oxygen vacancies engineering by coordinating oxygen-buffering CeO2 with CoO nanorods as efficient bifunctional oxygen electrode electrocatalyst. J Energy Chem. 2021;59:615. https://doi.org/10.1016/j.jechem.2020.11.033.

    Article  CAS  Google Scholar 

  34. Trogadas P, Kapil N, Angel GMA, Kühl S, Strasser P, Brett DJL, Coppens MO. Rapid synthesis of supported single metal nanoparticles and effective removal of stabilizing ligands. J Mater Chem A. 2021;9(43):24283. https://doi.org/10.1039/d1ta06032e.

    Article  CAS  Google Scholar 

  35. Sun F, Su R, Zhou Y, Li H, Meng F, Luo Y, Zhang S, Zhang W, Zha B, Zhang S, Huo F. Synthesis of high-loading Pt/C electrocatalysts using a surfactant-assisted microwave discharge method for oxygen reduction reactions. ACS Appl Mater Interfaces. 2022;14(36):41079. https://doi.org/10.1021/acsami.2c11910.

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz-Camacho B, Palafox-Segoviano JA, Pérez-Díaz PJ, Medina-Ramírez A. Synthesis of supported Pt nanoparticles by sonication for ORR: effect of the graphene oxide-carbon composite. Int J Hydrogen Energy. 2021;46(51):26027. https://doi.org/10.1016/j.ijhydene.2021.03.143.

    Article  CAS  Google Scholar 

  37. Xie M, Chu T, Wang X, Li B, Yang D, Ming P, Zhang C. Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell. Int J Hydrogen Energy. 2022;47(65):28074. https://doi.org/10.1016/j.ijhydene.2022.06.131.

    Article  CAS  Google Scholar 

  38. Labata MF, Li G, Ocon J, Chuang P-YA. Insights on platinum-carbon catalyst degradation mechanism for oxygen reduction reaction in acidic and alkaline media. J Power Sources. 2021;487:229356. https://doi.org/10.1016/j.jpowsour.2020.229356.

  39. Bai J, Ke S, Song J, Wang K, Sun C, Zhang J, Dou M. Surface engineering of carbon-supported platinum as a route to electrocatalysts with superior durability and activity for PEMFC cathodes. ACS Appl Mater Interfaces. 2022;14(4):5287. https://doi.org/10.1021/acsami.1c20823.

    Article  CAS  PubMed  Google Scholar 

  40. Park KY, Sweers ME, Berner U, Hirth E, Downing JR, Hui J, Mailoa J, Johnston C, Kim S, Seitz LC, Hersam MC. Mitigating Pt loss in polymer electrolyte membrane fuel cell cathode catalysts using graphene nanoplatelet pickering emulsion processing. Adv Funct Mater. 2022;32(43):2205216. https://doi.org/10.1002/adfm.202205216.

    Article  CAS  Google Scholar 

  41. Zhang L, Lu P, Luo Y, Zheng JY, Ma W, Ding L-X, Wang H. Graphene-quantum-dot-composited platinum nanotube arrays as a dual efficient electrocatalyst for the oxygen reduction reaction and methanol electro-oxidation. J Mater Chem A. 2021;9(15):9609. https://doi.org/10.1039/d0ta12418d.

    Article  CAS  Google Scholar 

  42. Gan J, Zhang J, Zhang B, Chen W, Niu D, Qin Y, Duan X, Zhou X. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. J Energy Chem. 2020;45(C):59. https://doi.org/10.1016/j.jechem.2019.09.024.

  43. Meng QH, Hao C, Yan B, Yang B, Liu J, Shen PK, Tian ZQ. High-performance proton exchange membrane fuel cell with ultra-low loading Pt on vertically aligned carbon nanotubes as integrated catalyst layer. J Energy Chem. 2022;71:497. https://doi.org/10.1016/j.jechem.2022.03.018.

    Article  CAS  Google Scholar 

  44. Pajootan E, Omanovic S, Coulombe S. Controllable dry synthesis of binder-free nanostructured platinum electrocatalysts supported on multi-walled carbon nanotubes and their performance in the oxygen reduction reaction. Chem Eng J. 2021;426:131706. https://doi.org/10.1016/j.cej.2021.131706.

    Article  CAS  Google Scholar 

  45. Chen X, Niu K, Xue Z, Liu X, Liu B, Zhang B, Zeng H, Lv W, Zhang Y, Wu Y. Ultrafine platinum nanoparticles supported on N, S-codoped porous carbon nanofibers as efficient multifunctional materials for noticeable oxygen reduction reaction and water splitting performance. Nanoscale Adv. 2022;4(6):1639. https://doi.org/10.1039/d2na00014h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun Y, Li M, Qu X, Zheng S, Alvarez PJJ, Fu H. Efficient reduction of selenite to elemental selenium by liquid-phase catalytic hydrogenation using a highly stable multiwalled carbon nanotube-supported Pt catalyst coated by N-doped carbon. ACS Appl Mater Interfaces. 2021;13(25):29541. https://doi.org/10.1021/acsami.1c05101.

    Article  CAS  Google Scholar 

  47. Mardle P, Ji X, Wu J, Guan S, Dong H, Du S. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Appl Catal, B. 2020;260(C):118031. https://doi.org/10.1016/j.apcatb.2019.118031.

  48. Lu L, Deng H, Zhao Z, Xu B, Sun X. N-doped carbon nanotubes supported Pt nanowire catalysts for proton exchange membrane fuel cells. J Power Sources. 2022;529:231229. https://doi.org/10.1016/j.jpowsour.2022.231229.

    Article  CAS  Google Scholar 

  49. Dong Q, Mo Z, Wang H, Ji S, Wang X, Linkov V, Wang R. N-doped carbon networks containing inserted FeNx@NC nanospheroids and bridged by carbon nanotubes as enhanced catalysts for the oxygen reduction reaction. ACS Sustainable Chem Eng. 2020;8(18):6979. https://doi.org/10.1021/acssuschemeng.0c00132.

    Article  CAS  Google Scholar 

  50. Liu X, Yang W, Chen L, Liu Z, Long L, Wang S, Liu C, Dong S, Jia J. Graphitic carbon nitride (g-C3N4)-derived bamboo-like carbon nanotubes/Co nanoparticles hybrids for highly efficient electrocatalytic oxygen reduction. ACS Appl Mater Interfaces. 2020;12(4):4463. https://doi.org/10.1021/acsami.9b18454.

    Article  CAS  PubMed  Google Scholar 

  51. Tang F, Xia W, Zhang H, Zheng L, Zhao Y, Ge J, Tang J. Synthesis of Fe-doped carbon hybrid composed of CNT/flake-like carbon for catalyzing oxygen reduction. Nano Res. 2022;15(7):6670. https://doi.org/10.1007/s12274-022-4223-8.

    Article  CAS  Google Scholar 

  52. Wang Y, Liu Y, Yang H, Liu Y, Wu KH, Yang G. Ionic liquid derived Fe, N, B co-doped bamboo-like carbon nanotubes as an efficient oxygen reduction catalyst. J Colloid Interface Sci. 2020;579:637. https://doi.org/10.1016/j.jcis.2020.06.076.

    Article  CAS  PubMed  Google Scholar 

  53. Choi JI, Kim HS, Sohn Y-J, Yim S-D, Alamgir FM, Jang SS. Density Functional theory study of oxygen reduction on graphene and platinum surfaces of Pt–graphene hybrids. ACS Appl Nano Mater. 2021;4(2):1067. https://doi.org/10.1021/acsanm.0c02625.

    Article  CAS  Google Scholar 

  54. Nechiyil D, Garapati MS, Shende RC, Joulie S, Neumeyer D, Bacsa R, Puech P, Ramaprabhu S, Bacsa W. Optimizing metal-support interphase for efficient fuel cell oxygen reduction reaction catalyst. J Colloid Interface Sci. 2020;561(C):439. https://doi.org/10.1016/j.jcis.2019.11.015.

  55. Chen LX, Jiang M, Lu Z, Gao C, Chen ZW, Singh CV. Two-dimensional graphdiyne-confined platinum catalyst for hydrogen evolution and oxygen reduction reactions. ACS Appl Mater Interfaces. 2021;13(40):47541. https://doi.org/10.1021/acsami.1c12054.

    Article  CAS  PubMed  Google Scholar 

  56. Liu D, Zhang J, Liu D, Li T, Yan Y, Wei X, Yang Y, Yan S, Zou Z. N-doped graphene-coated commercial Pt/C catalysts toward high-stability and antipoisoning in oxygen reduction reaction. J Phys Chem Lett. 2022;13(8):2019. https://doi.org/10.1021/acs.jpclett.1c04005.

    Article  CAS  PubMed  Google Scholar 

  57. Park C, Lee E, Lee G, Tak Y. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Appl Catal, B. 2020;268:118414. https://doi.org/10.1016/j.apcatb.2019.118414.

    Article  CAS  Google Scholar 

  58. Xu C, Fan C, Zhang X, Chen H, Liu X, Fu Z, Wang R, Hong T, Cheng J. MXene (Ti3C2Tx) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC. ACS Appl Mater Interfaces. 2020;12(17):19539. https://doi.org/10.1021/acsami.0c02446.

    Article  CAS  PubMed  Google Scholar 

  59. Li S, Liu J, Liang J, Lin Z, Liu X, Chen Y, Lu G, Wang C, Wei P, Han J, Huang Y, Wu G, Li Q. Tuning oxygen vacancy in SnO2 inhibits Pt migration and agglomeration towards high-performing fuel cells. Appl Catal, B. 2023;320:122017. https://doi.org/10.1016/j.apcatb.2022.122017.

    Article  CAS  Google Scholar 

  60. Jung WS, Lee WH, Oh H-S, Popov BN. Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. J Mater Chem A. 2020;8(38):19833. https://doi.org/10.1039/d0ta05182a.

    Article  CAS  Google Scholar 

  61. Kregar A, Tavčar G, Kravos A, Katrašnik T. Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells. ApEn. 2020;263:114547. https://doi.org/10.1016/j.apenergy.2020.114547.

    Article  CAS  Google Scholar 

  62. Sandbeck DJS, Inaba M, Quinson J, Bucher J, Zana A, Arenz M, Cherevko S. Particle size effect on platinum dissolution: practical considerations for fuel cells. ACS Appl Mater Interfaces. 2020;12(23):25718. https://doi.org/10.1021/acsami.0c02801.

    Article  CAS  PubMed  Google Scholar 

  63. Sandbeck DJS, Secher NM, Speck FD, Sørensen JE, Kibsgaard J, Chorkendorff I, Cherevko S. Particle size effect on platinum dissolution: considerations for accelerated stability testing of fuel cell catalysts. ACS Catal. 2020;10(11):6281. https://doi.org/10.1021/acscatal.0c00779.

    Article  CAS  Google Scholar 

  64. Wang S, Xiong X, Zou X, Ding K, Pang Z, Xu Q, Zhou Z, Lu X. Unraveling the dissolution mechanism of platinum and silver electrodes during composite electrodeposition in a deep eutectic solvent. J Mater Chem A. 2020;8(8):4354. https://doi.org/10.1039/c9ta13577d.

    Article  CAS  Google Scholar 

  65. Bogar M, Yakovlev Y, Sandbeck DJS, Cherevko S, Matolínová I, Amenitsch H, Khalakhan I. Interplay among dealloying, ostwald ripening, and coalescence in PtxNi100–x bimetallic alloys under fuel-cell-related conditions. ACS Catal. 2021;11(18):11360. https://doi.org/10.1021/acscatal.1c01111.

    Article  CAS  Google Scholar 

  66. Kovtunenko VA, Karpenko-Jereb L. Study of voltage cycling conditions on Pt oxidation and dissolution in polymer electrolyte fuel cells. J Power Sources. 2021;493: 229693. https://doi.org/10.1016/j.jpowsour.2021.229693.

    Article  CAS  Google Scholar 

  67. Goswami N, Grunewald JB, Fuller TF, Mukherjee PP. Mechanistic interactions in polymer electrolyte fuel cell catalyst layer degradation. J Mater Chem A. 2022;10(28):15101. https://doi.org/10.1039/d2ta02177c.

  68. Wu Y-F, Ma J-W, Huang Y-H. Enhancing oxygen reduction reaction of Pt–Co/C nanocatalysts via synergetic effect between Pt and Co prepared by one-pot synthesis. Rare Met. 2022;42(1):146. https://doi.org/10.1007/s12598-022-02119-6.

    Article  CAS  Google Scholar 

  69. Cheng W-Z, Liang J-L, Yin H-B, Wang Y-J, Yan W-F, Zhang J-N. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Met. 2020;39(7):815. https://doi.org/10.1007/s12598-020-01440-2.

    Article  CAS  Google Scholar 

  70. Shu C, Tan Q, Deng C, Du W, Gan Z, Liu Y, Fan C, Jin H, Tang W, Yang Xd, Yang X, Wu Y. Hierarchically mesoporous carbon spheres coated with a single atomic Fe-N-C layer for balancing activity and mass transfer in fuel cells. Carbon Energy. 2021;4(1):1. https://doi.org/10.1002/cey2.136.

  71. Lykhach Y, Skála T, Neitzel A, Tsud N, Beranová K, Prince KC, Matolín V, Libuda J. Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films. Chin J Catal. 2020;41(6):985. https://doi.org/10.1016/s1872-2067(19)63462-5.

    Article  CAS  Google Scholar 

  72. Chen J, Qian G, Chu B, Jiang Z, Tan K, Luo L, Li B, Yin S. Tuning d-band center of Pt by PtCo-PtSn heterostructure for enhanced oxygen reduction reaction performance. Small. 2022;18(12):2106773. https://doi.org/10.1002/smll.202106773.

    Article  CAS  Google Scholar 

  73. Li X, He Y, Cheng S, Li B, Zeng Y, Xie Z, Meng Q, Ma L, Kisslinger K, Tong X, Hwang S, Yao S, Li C, Qiao Z, Shan C, Zhu Y, Xie J, Wang G, Wu G, Su D. Atomic structure evolution of Pt-Co binary catalysts: single metal sites versus intermetallic nanocrystals. Adv Mater. 2021;33(48):2106371. https://doi.org/10.1002/adma.202106371.

    Article  CAS  Google Scholar 

  74. Tetteh EB, Gyan-Barimah C, Lee HY, Kang TH, Kang S, Ringe S, Yu JS. Strained Pt(221) facet in a PtCo@Pt-rich catalyst boosts oxygen reduction and hydrogen evolution activity. ACS Appl Mater Interfaces. 2022;14(22):25246. https://doi.org/10.1021/acsami.2c00398.

    Article  CAS  PubMed  Google Scholar 

  75. Chen Q, Chen Z, Ali A, Luo Y, Feng H, Luo Y, Tsiakaras P, Kang SP. Shell-thickness-dependent Pd@PtNi core–shell nanosheets for efficient oxygen reduction reaction. Chem Eng J. 2022;427:131565. https://doi.org/10.1016/j.cej.2021.131565.

    Article  CAS  Google Scholar 

  76. Lee WJ, Bera S, Woo HJ, Hong W, Park JY, Oh SJ, Kwon SH. Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen reduction activity and stability. Chem Eng J. 2022;442(P1):136123. https://doi.org/10.1016/j.cej.2022.136123.

    Article  CAS  Google Scholar 

  77. Liao Y, Li J, Zhang S, Chen S. High index surface-exposed and composition-graded PtCu3@Pt3Cu@Pt nanodendrites for high-performance oxygen reduction. Chin J Catal. 2021;42(7):1108. https://doi.org/10.1016/s1872-2067(20)63735-4.

    Article  CAS  Google Scholar 

  78. Luo M, Qin Y, Li M, Sun Y, Li C, Li Y, Yang Y, Lv F, Wu D, Zhou P, Guo S. Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Sci Bull (Beijing). 2020;65(2):97. https://doi.org/10.1016/j.scib.2019.10.012.

    Article  CAS  PubMed  Google Scholar 

  79. Liu X, Hao S, Zheng G, Su Z, Wang Y, Wang Q, Lei L, He Y, Zhang X. Ultrasmall Pt2Sr alloy nanoparticles as efficient bifunctional electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. J Energy Chem. 2022;64(01):315. https://doi.org/10.1016/j.jechem.2021.04.065.

    Article  CAS  Google Scholar 

  80. Campos-Roldán CA, Pailloux F, Blanchard P-Y, Jones DJ, Rozière J, Cavaliere S. Rational design of carbon-supported platinum-gadolinium nanoalloys for oxygen reduction reaction. ACS Catal. 2021;11(21):13519. https://doi.org/10.1021/acscatal.1c02449.

    Article  CAS  Google Scholar 

  81. Tetteh EB, Lee HY, Shin CH, Kim Sh, Ham HC, Tran TN, Jang JH, Yoo SJ, Yu JS. New PtMg alloy with durable electrocatalytic performance for oxygen reduction reaction in proton exchange membrane fuel cell. ACS Energy Lett. 2020;5(5):1601. https://doi.org/10.1021/acsenergylett.0c00184.

  82. Zhang L, Wang Q, Li L, Banis MN, Li J, Adair K, Sun Y, Li R, Zhao ZJ, Gu M, Sun X. Single atom surface engineering: a new strategy to boost electrochemical activities of Pt catalysts. Nano Energy. 2022;93:106813. https://doi.org/10.1016/j.nanoen.2021.106813.

    Article  CAS  Google Scholar 

  83. Kluge RM, Haid RW, Riss A, Bao Y, Seufert K, Schmidt TO, Watzele SA, Barth JV, Allegretti F, Auwärter W, Calle-Vallejo F, Bandarenka AS. A trade-off between ligand and strain effects optimizes the oxygen reduction activity of Pt alloys. Energy Environ Sci. 2022;15(12):5181. https://doi.org/10.1039/d2ee01850k.

    Article  CAS  Google Scholar 

  84. Ze H, Chen X, Wang XT, Wang YH, Chen QQ, Lin JS, Zhang YJ, Zhang XG, Tian ZQ, Li JF. Molecular insight of the critical role of ni in pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ sers borrowing strategy. J Am Chem Soc. 2021;143(3):1318. https://doi.org/10.1021/jacs.0c12755.

    Article  CAS  PubMed  Google Scholar 

  85. Hu B, Yuan J, Zhang J, Shu Q, Guan D, Yang G, Zhou W, Shao Z. High activity and durability of a Pt-Cu-Co ternary alloy electrocatalyst and its large-scale preparation for practical proton exchange membrane fuel cells. Compos B. 2021;222:109082. https://doi.org/10.1016/j.compositesb.2021.109082.

    Article  CAS  Google Scholar 

  86. Dukic T, Moriau LJ, Pavko L, Kostelec M, Prokop M, Ruiz-Zepeda F, Sala M, Drazic G, Gatalo M, Hodnik N. Understanding the crucial significance of the temperature and potential window on the stability of carbon supported Pt-alloy nanoparticles as oxygen reduction reaction electrocatalysts. ACS Catal. 2022;12(1):101. https://doi.org/10.1021/acscatal.1c04205.

    Article  CAS  PubMed  Google Scholar 

  87. Shen J, Hu Z, Chen K, Chen C, Zhu Y, Li C. Platinum based high entropy alloy oxygen reduction electrocatalysts for proton exchange membrane fuel cells. Mater Today Nano. 2023;21:100282. https://doi.org/10.1016/j.mtnano.2022.100282.

    Article  CAS  Google Scholar 

  88. Zhang W, Feng X, Mao ZX, Li J, Wei Z. Stably immobilizing Sub-3 nm high-entropy Pt alloy nanocrystals in porous carbon as durable oxygen reduction electrocatalyst. Adv Funct Mater. 2022;32(44):2204110. https://doi.org/10.1002/adfm.202204110.

    Article  CAS  Google Scholar 

  89. Zhao P, Zhang B, Hao X, Yi W, Chen J, Cao Q. Rational design and synthesis of adjustable Pt and Pt-based 3D-nanoframeworks. ACS Appl Energy Mater. 2022;5(1):942. https://doi.org/10.1021/acsaem.1c03337.

    Article  CAS  Google Scholar 

  90. Yu Y, Xia F, Wang C, Wu J, Fu X, Ma D, Lin B, Wang J, Yue Q, Kang Y. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022;15(9):7868. https://doi.org/10.1007/s12274-022-4432-1.

    Article  CAS  Google Scholar 

  91. Zhu J, Elnabawy AO, Lyu Z, Xie M, Murray EA, Chen Z, Jin W, Mavrikakis M, Xia Y. Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Mater Today. 2020;35:69. https://doi.org/10.1016/j.mattod.2019.11.002.

    Article  CAS  Google Scholar 

  92. Gong S, Sun M, Lee Y, Becknell N, Zhang J, Wang Z, Zhang L, Niu Z. Bulk-like Pt(100)-oriented ultrathin surface: combining the merits of single crystals and nanoparticles to boost oxygen reduction reaction. Angew Chem Int Ed Engl. 2023;62(4):202214516. https://doi.org/10.1002/anie.202214516.

    Article  CAS  Google Scholar 

  93. Lutian Z, Cehuang F, Liuxuan L, Jiabin Y, Lu A, Xiaohui Y, Shuiyun S, Junliang Z. Electrochemical synthesis of monodispersed and highly alloyed PtCo nanoparticles with a remarkable durability towards oxygen reduction reaction. Appl Catal, B. 2022;318:121831. https://doi.org/10.1016/j.apcatb.2022.121831.

    Article  CAS  Google Scholar 

  94. Xiao F, Wang Q, Xu GL, Qin X, Hwang I, Sun CJ, Liu M, Hua W, Wu Hw, Zhu S, Li JC, Wang JG, Zhu Y, Wu D, Wei Z, Gu M, Amine K, Shao M. Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nat Catal. 2022;5(6):503. https://doi.org/10.1038/s41929-022-00796-1.

  95. Daimon H, Yamazaki SI, Asahi M, Ioroi T, Inaba M. A strategy for drastic improvement in the durability of Pt/C and PtCo/C alloy catalysts for the oxygen reduction reaction by melamine surface modification. ACS Catal. 2022;12(15):8976. https://doi.org/10.1021/acscatal.2c01942.

  96. Rao P, Luo J, Li J, Huang W, Sun W, Chen Q, Jia C, Liu Z, Deng P, Shen Y, Tian X. One-dimensional PtFe hollow nanochains for the efficient oxygen reduction reaction. Carbon Energy. 2022;4(6):1003. https://doi.org/10.1002/cey2.192.

    Article  CAS  Google Scholar 

  97. Yuan Y, Zhang Q, Li Y, Lv L, Hou Y, Li G, Fu J, Yang L, Bai Z. Beads-on-string hierarchical structured electrocatalysts for efficient oxygen reduction reaction. Carbon Energy. 2022;5(2):1. https://doi.org/10.1002/cey2.253.

    Article  CAS  Google Scholar 

  98. Xu H, Shang H, Wang C, Du Y. Ultrafine Pt-based nanowires for advanced catalysis. Adv Funct Mater. 2020;30(28):2000793. https://doi.org/10.1002/adfm.202000793.

    Article  CAS  Google Scholar 

  99. Niu H, Xia C, Huang L, Zaman S, Maiyalagan T, Guo W, You B, Xia BY. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chin J Catal. 2022;43(6):1459. https://doi.org/10.1016/s1872-2067(21)63862-7.

    Article  CAS  Google Scholar 

  100. Wang Q, Tian H, Yu Y, Li J, Rao P, Li R, Du Y, Jia C, Luo J, Deng P, Shen Y, Tian X. Synthesis and design of a highly stable platinum nickel electrocatalyst for the oxygen reduction reaction. ACS Appl Mater Interfaces. 2021;13(44):52681. https://doi.org/10.1021/acsami.1c16375.

    Article  CAS  PubMed  Google Scholar 

  101. Cheng N, Zhang L, Zhou Y, Yu S, Chen L, Jiang H, Li C. A general carbon monoxide-assisted strategy for synthesizing one-nanometer-thick Pt-based nanowires as effective electrocatalysts. J Colloid Interface Sci. 2020;572:170. https://doi.org/10.1016/j.jcis.2020.03.083.

    Article  CAS  PubMed  Google Scholar 

  102. Lei W, Li M, He L, Meng X, Mu Z, Yu Y, Ross FM, Yang W. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020;13(3):638. https://doi.org/10.1007/s12274-020-2666-3.

    Article  CAS  Google Scholar 

  103. Cao H, Cao J, Wang F, Di S, Zhu H, Pu M, Bulanova A. Composition-tunable PtCu porous nanowires as highly active and durable catalyst for oxygen reduction reaction. Int J Hydrogen Energy. 2021;46(35):18284. https://doi.org/10.1016/j.ijhydene.2021.02.208.

    Article  CAS  Google Scholar 

  104. Li M, Zhao Z, Xia Z, Yang Y, Luo M, Huang Y, Sun Y, Chao Y, Yang W, Yang W, Yu Y, Lu G, Guo S. Lavender-like Ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 20 20;10(5):3018. https://doi.org/10.1021/acscatal.9b04419.

  105. Kong Z, Maswadeh Y, Vargas JA, Shan S, Wu ZP, Kareem H, Leff AC, Tran DT, Chang F, Yan S, Nam S, Zhao X, Lee JM, Luo J, Shastri S, Yu G, Petkov V, Zhong CJ. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. JACS. 2020;142(3):1287. https://doi.org/10.1021/jacs.9b10239.

    Article  CAS  Google Scholar 

  106. Zhang X, Wang S, Wu C, Li H, Cao Y, Li S, Xia H. Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER. J Mater Chem A. 2020;8(45):23906. https://doi.org/10.1039/d0ta06543a.

    Article  CAS  Google Scholar 

  107. Deng Z, Pang W, Gong M, Jin Z, Wang X. Revealing the role of mo doping in promoting oxygen reduction reaction performance of Pt3Co nanowires. J Energy Chem. 2022;66(03):16. https://doi.org/10.1016/j.jechem.2021.06.018.

    Article  CAS  Google Scholar 

  108. Liu J, Liu S, Yan F, Wen Z, Chen W, Liu X, Liu Q, Shang J, Yu R, Su D, Shui J. Ultrathin nanotube structure for mass-efficient and durable oxygen reduction reaction catalysts in PEM fuel cells. J Am Chem Soc. 2022;144(41):19106. https://doi.org/10.1021/jacs.2c08361.

    Article  CAS  PubMed  Google Scholar 

  109. Shi Y, Yang W, Gong W, Wang X, Zhou Y, Shen X, Wu Y, Di J, Zhang D, Li Q. Interconnected surface-vacancy-rich PtFe nanowires for efficient oxygen reduction. J Mater Chem A. 2021;9(21):12845. https://doi.org/10.1039/d1ta00972a.

    Article  CAS  Google Scholar 

  110. Kabiraz MK, Ruqia B, Kim J, Kim H, Kim HJ, Hong Y, Kim MJ, Kim YK, Kim C, Lee WJ, Lee W, Hwang GH, Ri HC, Baik H, Oh HS, Lee YW, Gao L, Huang H, Paek SM, Jo YJ, Choi CH, Han SW, Choi SI. Understanding the grain boundary behavior of bimetallic platinum-cobalt alloy nanowires toward oxygen electro-reduction. ACS Catal. 2022;12(6):3516. https://doi.org/10.1021/acscatal.1c05766.

    Article  CAS  Google Scholar 

  111. Lin R, Sun Y, Cai X, Zheng T, Liu X, Wang H, Liu S, Hao Z. Embedding Pt-Ni octahedral nanoparticles in the 3D nitrogen-doped porous graphene for enhanced oxygen reduction activity. Electrochim Acta. 2021;391:138956. https://doi.org/10.1016/j.electacta.2021.138956.

    Article  CAS  Google Scholar 

  112. Peng J, Tao P, Song C, Shang W, Deng T, Wu J. Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. Chin J Catal. 2022;43(1):47. https://doi.org/10.1016/s1872-2067(21)63896-2.

    Article  CAS  Google Scholar 

  113. Kong F, Ren Z, Norouzi Banis M, Du L, Zhou X, Chen G, Zhang L, Li J, Wang S, Li M, Doyle-Davis K, Ma Y, Li R, Young A, Yang L, Markiewicz M, Tong Y, Yin G, Du C, Luo J, Sun X. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020;10(7):4205. https://doi.org/10.1021/acscatal.9b05133.

    Article  CAS  Google Scholar 

  114. Xie M, Lyu Z, Chen R, Shen M, Cao Z, Xia Y. Pt-Co@Pt octahedral nanocrystals: enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J Am Chem Soc. 2021;143(22):8509. https://doi.org/10.1021/jacs.1c04160.

    Article  CAS  PubMed  Google Scholar 

  115. Zhao F, Zheng L, Yuan Q, Zhang Q, Sheng T, Yang X, Gu L, Wang X. PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells. Nano Res. 2022;16(2):2252. https://doi.org/10.1007/s12274022-5026-7.

    Article  Google Scholar 

  116. Zhu Y, Peng J, Zhu X, Bu L, Shao Q, Pao CW, Hu Z, Li Y, Wu J, Huang X. A large-scalable, surfactant-free, and ultrastable Ru-doped Pt3Co oxygen reduction catalyst. Nano Lett. 2021;21(15):6625. https://doi.org/10.1021/acs.nanolett.1c02064.

    Article  CAS  PubMed  Google Scholar 

  117. Polani S, MacArthur KE, Kang J, Klingenhof M, Wang X, Moller T, Amitrano R, Chattot R, Heggen M, Dunin-Borkowski RE, Strasser P. Highly active and stable large Mo-doped Pt-Ni octahedral catalysts for ORR: synthesis, post-treatments, and electrochemical performance and stability. ACS Appl Mater Interfaces. 2022;14(26):29690. https://doi.org/10.1021/acsami.2c02397.

    Article  CAS  PubMed  Google Scholar 

  118. Xia T, Zhao K, Zhu Y, Bai X, Gao H, Wang Z, Gong Y, Feng M, Li S, Zheng Q, Wang S, Wang R, Guo H. Mixed-dimensional Pt-Ni Alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cells. Adv Mater. 2023;35(2):2206508. https://doi.org/10.1002/adma.202206508.

    Article  CAS  Google Scholar 

  119. Wei M, Huang L, Li L, Ai F, Su J, Wang J. Coordinatively unsaturated PtCo flowers assembled with ultrathin nanosheets for enhanced oxygen reduction. ACS Catal. 2022;12(11):6478. https://doi.org/10.1021/acscatal.1c05153.

    Article  CAS  Google Scholar 

  120. Du X, Sun S, Ma G, Yu H, Wang M, Lu Z, Yu X, Li L, Zhang X, Yang X. Cu-template-dependent synthesis of PtCu nanotubes for oxygen reduction reactions. Int J Hydrogen Energy. 2022;47(9):6217. https://doi.org/10.1016/j.ijhydene.2021.11.215.

    Article  CAS  Google Scholar 

  121. Chen S, Li M, Gao M, Jin J, van Spronsen MA, Salmeron MB, Yang P. High-performance Pt-Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 2020;20(3):1974. https://doi.org/10.1021/acs.nanolett.9b05251.

    Article  CAS  PubMed  Google Scholar 

  122. Ma H, Zheng Z, Zhao H, Shen C, Chen H, Li H, Cao Z, Kuang Q, Lin H, Xie Z. Trimetallic PtNiCo branched nanocages as efficient and durable bifunctional electrocatalysts towards oxygen reduction and methanol oxidation reactions. J Mater Chem A. 2021;9(41):23444. https://doi.org/10.1039/d1ta07488a.

    Article  CAS  Google Scholar 

  123. Chen S, Zhao J, Su H, Li H, Wang H, Hu Z, Bao J, Zeng J. Pd-Pt tesseracts for the oxygen reduction reaction. J Am Chem Soc. 2021;143(1):496. https://doi.org/10.1021/jacs.0c12282.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang Y, Ye K, Liu Q, Qin J, Jiang Q, Yang B, Yin F. Ni2+-directed anisotropic growth of PtCu nested skeleton cubes boosting electroreduction of oxygen. Adv Sci. 2022;9(14):2104927. https://doi.org/10.1002/advs.202104927.

    Article  CAS  Google Scholar 

  125. Zhu X, Huang L, Wei M, Tsiakaras P, Shen PK. Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Appl Catal, B. 2021;281:119460. https://doi.org/10.1016/j.apcatb.2020.119460.

    Article  CAS  Google Scholar 

  126. Qin Y, Zhang W, Guo K, Liu X, Liu J, Liang X, Wang X, Gao D, Gan L, Zhu Y, Zhang Z, Hu W. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv Funct Mater. 2020;30(11):1910107. https://doi.org/10.1002/adfm.201910107.

    Article  CAS  Google Scholar 

  127. Gong L, Liu J, Li Y, Wang X, Luo E, Jin Z, Ge J, Liu C, Xing W. An ultralow-loading platinum alloy efficient ORR electrocatalyst based on the surface-contracted hollow structure. Chem Eng J. 2022;428:131569. https://doi.org/10.1016/j.cej.2021.131569.

    Article  CAS  Google Scholar 

  128. Kang Y, Wang J, Wei Y, Wu Y, Xia D, Gan L. Engineering nanoporous and solid core-shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res. 2022;15(7):6148. https://doi.org/10.1007/s12274-022-4238-1.

    Article  CAS  Google Scholar 

  129. Li S, Tang X, Jia H, Li H, Xie G, Liu X, Lin X, Qiu H-J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J Catal. 2020;383:164. https://doi.org/10.1016/j.jcat.2020.01.024.

    Article  CAS  Google Scholar 

  130. Yu T, Zhang Y, Hu Y, Hu K, Lin X, Xie G, Liu X, Reddy KM, Ito Y, Qiu H-J. Twelve-component free-standing nanoporous high-entropy alloys for multifunctional electrocatalysis. ACS Mater Lett. 2021;4(1):181. https://doi.org/10.1021/acsmaterialslett.1c00762.

    Article  CAS  Google Scholar 

  131. Huang L, Su YQ, Qi R, Dang D, Qin Y, Xi S, Zaman S, You B, Ding S, Xia BY. Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew Chem Int Ed Engl. 2021;60(48):25530. https://doi.org/10.1002/anie.202111426.

    Article  CAS  PubMed  Google Scholar 

  132. Cheng H, Gui R, Yu H, Wang C, Liu S, Liu H, Zhou T, Zhang N, Zheng X, Chu W, Lin Y, Wu H, Wu C, Xie Y. Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc Natl Acad Sci U S A. 2021;118(35):2104026118. https://doi.org/10.1073/pnas.2104026118.

    Article  CAS  Google Scholar 

  133. Zhu S, Yang L, Bai J, Chu Y, Liu J, Jin Z, Liu C, Ge J, Xing W. Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction. Nano Res. 2022;16(2):2035. https://doi.org/10.1007/s12274-022-4868-3.

    Article  CAS  Google Scholar 

  134. Kim HY, Kwon T, Ha Y, Jun M, Baik H, Jeong HY, Kim H, Lee K, Joo SH. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 2020;20(10):7413. https://doi.org/10.1021/acs.nanolett.0c02812.

    Article  CAS  PubMed  Google Scholar 

  135. Zhao W, Chi B, Liang L, Yang P, Zhang W, Ge X, Wang L, Cui Z, Liao S. Optimizing the electronic structure of ordered Pt-Co-Ti ternary intermetallic catalyst to boost acidic oxygen reduction. ACS Catal. 2022;12(13):7571. https://doi.org/10.1021/acscatal.2c00554.

    Article  CAS  Google Scholar 

  136. Gong M, Xiao D, Deng Z, Zhang R, Xia W, Zhao T, Liu X, Shen T, Hu Y, Lu Y, Zhao X, Xin H, Wang D. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl Catal, B. 2021;282:119617. https://doi.org/10.1016/j.apcatb.2020.119617.

    Article  CAS  Google Scholar 

  137. Bai J, Yang L, Jin Z, Ge J, Xing W. Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction. Chin J Catal. 2022;43(6):1444. https://doi.org/10.1016/s1872-2067(21)63991-8.

    Article  CAS  Google Scholar 

  138. Yoo TY, Yoo JM, Sinha AK, Bootharaju MS, Jung E, Lee HS, Lee BH, Kim J, Antink WH, Kim YM, Lee J, Lee E, Lee DW, Cho SP, Yoo SJ, Sung YE, Hyeon T. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis. J Am Chem Soc. 2020;142(33):14190. https://doi.org/10.1021/jacs.0c05140.

    Article  CAS  PubMed  Google Scholar 

  139. Ma Y, Kuhn AN, Gao W, Al-Zoubi T, Du H, Pan X, Yang H. Strong electrostatic adsorption approach to the synthesis of sub-three nanometer intermetallic platinum–cobalt oxygen reduction catalysts. Nano Energy. 2021;79:105465. https://doi.org/10.1016/j.nanoen.2020.105465.

    Article  CAS  Google Scholar 

  140. Luo Q, Xu W, Tang S. Fabricating high-loading ultra-small PtCu3/rGO via a traceless protectant and spray-freeze-drying method. Appl Catal, B. 2022;312:121433. https://doi.org/10.1016/j.apcatb.2022.121433.

    Article  CAS  Google Scholar 

  141. Hu Y, Shen T, Zhao X, Zhang J, Lu Y, Shen J, Lu S, Tu Z, Xin HL, Wang D. Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis. Appl Catal, B. 2020;279:119370. https://doi.org/10.1016/j.apcatb.2020.119370.

    Article  CAS  Google Scholar 

  142. Hu Y, Guo X, Shen T, Zhu Y, Wang D. Hollow porous carbon-confined atomically ordered PtCo3 Intermetallics for an efficient oxygen reduction reaction. ACS Catal. 2022;12(9):5380. https://doi.org/10.1021/acscatal.2c01541.

    Article  CAS  Google Scholar 

  143. Yang CL, Wang LN, Yin P, Liu J, Chen MX, Yan QQ, Wang ZS, Xu SL, Chu SQ, Cui C, Ju H, Zhu J, Lin Y, Shui J, Liang HW. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science. 2021;374(6566):459. https://doi.org/10.1126/science.abj9980.

    Article  CAS  PubMed  Google Scholar 

  144. Guo P, Xia Y, Liu B, Ma M, Shen L, Dai Y, Zhang Z, Zhao Z, Zhang Y, Zhao L, Wang Z. Low-loading Sub-3 nm PtCo nanoparticles supported on Co-N-C with dual effect for oxygen reduction reaction in proton exchange membrane fuel cells. ACS Appl Mater Interfaces. 2022;14(48):53819. https://doi.org/10.1021/acsami.2c15996.

    Article  CAS  PubMed  Google Scholar 

  145. Yang Z, Yang H, Shang L, Zhang T. Ordered PtFeIr intermetallic nanowires prepared through a silica-protection strategy for the oxygen reduction reaction. Angew Chem Int Ed Engl. 2022;61(8):202113278. https://doi.org/10.1002/anie.202113278.

    Article  CAS  Google Scholar 

  146. Cheng Q, Yang S, Fu C, Zou L, Zou Z, Jiang Z, Zhang J, Yang H. High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs. Energy Environ Sci. 2022;15(1):278. https://doi.org/10.1039/d1ee02530a.

    Article  CAS  Google Scholar 

  147. Su J, Zhuang L, Zhang S, Liu Q, Zhang L, Hu G. Single atom catalyst for electrocatalysis. Chin Chem Lett. 2021;32(10):2947. https://doi.org/10.1016/j.cclet.2021.03.082.

    Article  CAS  Google Scholar 

  148. Han L, Cheng H, Liu W, Li H, Ou P, Lin R, Wang HT, Pao CW, Head AR, Wang CH, Tong X, Sun CJ, Pong WF, Luo J, Zheng JC, Xin HL. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat Mater. 2022;21(6):681. https://doi.org/10.1038/s41563-022-01252-y.

    Article  CAS  PubMed  Google Scholar 

  149. Yang Z, Xiang M, Zhu Y, Hui J, Jiang Y, Dong S, Yu C, Ou J, Qin H. Single-atom platinum or ruthenium on C4N as 2D high-performance electrocatalysts for oxygen reduction reaction. Chem Eng J. 2021;42(6):131347. https://doi.org/10.1016/j.cej.2021.131347.

    Article  CAS  Google Scholar 

  150. Kim JH, Shin D, Lee J, Baek DS, Shin TJ, Kim YT, Jeong HY, Kwak JH, Kim H, Joo SH. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano. 2020;14(2):1990. https://doi.org/10.1021/acsnano.9b08494.

    Article  CAS  PubMed  Google Scholar 

  151. Li J, Banis MN, Ren Z, Adair KR, Doyle-Davis K, Meira DM, Finfrock YZ, Zhang L, Kong F, Sham TK, Li R, Luo J, Sun X. Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small. 2021;17(11):20 07245.

  152. Wei ZX, Zhu YT, Liu JY, Zhang ZC, Hu WP, Xu H, Feng YZ, Ma JM. Recent advance in single-atom catalysis. Rare Met. 2021;40(4):767. https://doi.org/10.1007/s12598-020-01592-1.

    Article  CAS  Google Scholar 

  153. Chen JJ, Gu S, Hao R, Wang ZY, Li MQ, Li ZQ, Liu K, Liao KM, Wang ZQ, Huang H, Li YZ, Zhang KL, Lu ZG. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met. 2022;41(6):2055. https://doi.org/10.1007/s12598-022-01974-7.

    Article  CAS  Google Scholar 

  154. Zhu X, Tan X, Wu KH, Haw SC, Pao CW, Su BJ, Jiang J, Smith SC, Chen JM, Amal R, Lu X. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew Chem Int Ed Engl. 2021;60(40):21911. https://doi.org/10.1002/anie.202107790.

    Article  CAS  PubMed  Google Scholar 

  155. Cheng X, Wang Y, Lu Y, Zheng L, Sun S, Li H, Chen G, Zhang J. Single-atom alloy with Pt-Co dual sites as an efficient electrocatalyst for oxygen reduction reaction. Appl Catal, B. 2022;306:121112. https://doi.org/10.1016/j.apcatb.2022.121112.

    Article  CAS  Google Scholar 

  156. Liu J, Bak J, Roh J, Lee KS, Cho A, Han JW, Cho E. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction. ACS Catal. 2020;11(1):466. https://doi.org/10.1021/acscatal.0c03330.

    Article  CAS  Google Scholar 

  157. Liu B, Feng R, Busch M, Wang S, Wu H, Liu P, Gu J, Bahadoran A, Matsumura D, Tsuji T, Zhang D, Song F, Liu Q. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano. 2022;16(9):14121. https://doi.org/10.1021/acsnano.2c04077.

    Article  CAS  PubMed  Google Scholar 

  158. Kan D, Lian R, Wang D, Zhang X, Xu J, Gao X, Yu Y, Chen G, Wei Y. Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J Mater Chem A. 2020;8(33):17065. https://doi.org/10.1039/d0ta04429f.

    Article  CAS  Google Scholar 

  159. Kan D, Wang D, Cheng Y, Lian R, Sun B, Chen K, Huo W, Wang Y, Chen G, Wei Y. Designing of efficient bifunctional ORR/OER Pt Single-atom catalysts based on O-terminated MXenes by first-principles calculations. ACS Appl Mater Interfaces. 2021;13(44):52508. https://doi.org/10.1021/acsami.1c12893.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CITIC Dameng Mining Industries Limited -Guangxi University Joint Research Institute of Manganese Resources Utilization and Advanced Materials Technology, Guangxi University-CITIC Dameng Mining Industries Limited Joint Base of Postgraduate Cultivation, and State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and the National Natural Science Foundation of China (Nos.11364003 and 52102470), Guangxi Innovation Driven Development Project Grant (Nos. AA17204100 and AA18118052) and the Natural Science Foundation of Guangxi Province (No. 2018GXNSFAA138186).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Guo Zhang, Huan He or Xin-Hua Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, F., Hu, KS., Mai, JH. et al. Recent progress of Pt-based oxygen reduction reaction catalysts for proton exchange membrane fuel cells. Rare Met. 43, 2444–2468 (2024). https://doi.org/10.1007/s12598-023-02586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02586-5

Keywords

Navigation