Skip to main content
Log in

Improved photocatalytic performance of acetaldehyde degradation via crystal plane regulation on truncated octahedral CeO2

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, the truncated octahedral CeO2 (CeO2-to) with special morphology was prepared by the solvothermal method with oleic acid (OA) and oleamine (OM) as the morphology-directing agents. High-resolution transmission electron microscopy (HRTEM) results show that CeO2-to exposes composite {100} and {111} facets, while CeO2 cubic (CeO2-c) and CeO2 octahedral (CeO2-o) only expose single crystal facets of {100} plane and {111} plane, respectively. Interestingly, this CeO2-to photocatalyst exhibits remarkable photooxidation performance of gaseous acetaldehyde (CH3CHO) degradation, in which CO2 generation value reaches 1.78 and 7.97-times greater than that of CeO2-c and CeO2-o, respectively. In addition, the active species trapping experiment signifies that superoxide (·O2) and holes (h+) are the main reactive substances during the CH3CHO degradation process, and the electron paramagnetic resonance (EPR) spectra indicates that the former is the major contributor. Notably, the electron transfer mechanism between CeO2-to {100} and {111} facets and the surface oxygen adsorption ability are revealed via density functional theory (DFT) calculations. It is also confirmed that {100} facets are more conducive to the absorption of acetaldehyde than {111} facets. Finally, a reasonable mechanism for improved photocatalytic CH3CHO degradation on CeO2-to is proposed based on relevant experiments and DFT calculations. This study demonstrates that the systematic development of surface homojunction structured photocatalysts can efficiently increase the degradation activity for volatile organic compounds (VOCs). It also offers additional direction for optimizing the photocatalytic activity of other cerium-based photocatalysts.

Graphical abstract

摘要

本研究以油酸和油胺为形貌修饰剂,采用溶剂热法制备了具有特殊形态的截断八面体CeO2 (CeO2-to) 。高分辨率透射电镜(HRTEM)显示,CeO2-to 暴露出{100}和{111}复合晶面,而CeO2立方体(CeO2-c) 和CeO2 八面体(CeO2-o) 分别只暴露出{100} 面和{111} 面的单晶面。值得注意的是, CeO2-to 光催化剂对气态乙醛(CH3CHO) 的降解表现出显著的光氧化性能,其CO2 生成值分别是CeO2-c 和CeO2-o 的1.78 倍和7.97 倍。此外,活性物质捕获实验表明,•O2−和h+是CH3CHO 降解过程中的主要活性物质,并且通过电子顺磁共振(EPR)谱显示前者是主要贡献者。同时还通过密度泛函理论(DFT)计算揭示了CeO2-to {100}和{111}表面的电子转移机理和表面氧吸附能力,证实了{100}面比{111}面更有利于乙醛的吸收。最后,通过相关实验和DFT 计算结果的分析,提出了CeO2-to 光催化降解乙醛的合理机理。研究表明,通过系统地开发表面同质结结构的光催化剂,可以有效地提高其对挥发性有机化合物(VOCs) 的降解活性。这也为优化其他铈基光催化剂的光催化活性提供了新的方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao MC, Wu XJ, Xu LL, Meng FZ, Yang Q, Meng J, Liu XJ. Beta-CuGaO2: a ferroelectric semiconductor with narrow band gap as degradation catalyst for wastewater environmental remediation. Rare Met. 2022;41(3):972. https://doi.org/10.1007/s12598-021-01832-y.

    Article  CAS  Google Scholar 

  2. Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Hussain I, Saravanan R, Vo DN. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere. 2022;286(1): 131651. https://doi.org/10.1016/j.chemosphere.2021.131651.

    Article  CAS  PubMed  Google Scholar 

  3. Li P, Zhou Y, Zhao Z, Xu QF, Wang XY, Xiao M, Zou ZG. Hexahedron prism-Anchored octahedronal CeO2: crystal facet-based homojunction promoting efficient solar fuel synthesis. J Am Chem Soc. 2015;137(30):9547. https://doi.org/10.1021/jacs.5b05926.

    Article  CAS  PubMed  Google Scholar 

  4. Li RG, Zhang FX, Wang DE, Yang JX, Li MR, Zhu J, Zhou X, Han HX, Li C. Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4. Nat Commun. 2013;4(1):1432. https://doi.org/10.1038/ncomms2401.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao QY, Du QX, Yang Y, Zhao ZY, Cheng J, Bi FK, Shi XY, Xu JC, Zhang XD. Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: experimental and theoretical insights. Chem Eng J. 2022;433(1): 134510. https://doi.org/10.1016/j.cej.2022.134510.

    Article  CAS  Google Scholar 

  6. Yang L, Zhang HC. Photocatalyst and decoration design in indoor public spaces based on the photocatalytic function of nanometer titanium dioxide. Adv Mater Sci Eng. 2022;2022:1. https://doi.org/10.1155/2022/1937481.

    Article  CAS  Google Scholar 

  7. Yuan SS, Zhang QT. Application of one-dimensional nanomaterials in catalysis at the single-molecule and single-particle scale. Front Chem. 2021;9:812287. https://doi.org/10.3389/fchem.2021.812287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang JJ, Hu C, Zhang YH, Huang HW. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. Chin J Catal. 2022;43(5):1277. https://doi.org/10.1016/s1872-2067(21)63976-1.

    Article  CAS  Google Scholar 

  9. Chen F, Ma ZY, Ye LQ, Ma TY, Zhang TR, Zhang YH, Huang HW. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv Mater. 2020;32(11):e1908350. https://doi.org/10.1002/adma.201908350.

    Article  CAS  PubMed  Google Scholar 

  10. Sultana S, Mansingh S, Parida KM. Crystal facet and surface defect engineered low dimensional CeO2 (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. Mater Adv. 2021;2(21):6942. https://doi.org/10.1039/d1ma00539a.

    Article  CAS  Google Scholar 

  11. Wang SC, Liu G, Wang LZ. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem Rev. 2019;119(8):5192. https://doi.org/10.1021/acs.chemrev.8b00584.

    Article  CAS  PubMed  Google Scholar 

  12. Lin LH, Lin ZY, Zhang J, Cai X, Lin W, Yu ZY, Wang XC. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat Catal. 2020;3(8):649. https://doi.org/10.1038/s41929-020-0476-3.

    Article  CAS  Google Scholar 

  13. Zhang X, Sun SD, Cui J, Yang M, Zhang Q, Xiao P, Li JD, Yang Q, Liang SH. Spatial charge separation and high-index facet dependence in polyhedral Cu2O type-II surface heterojunctions for photocatalytic activity enhancement. Inorganic Chem Front. 2021;8(10):2603. https://doi.org/10.1039/d1qi00031d.

    Article  CAS  Google Scholar 

  14. Zheng TT, Xia YG, Jiao XL, Wang T, Chen DR. Enhanced photocatalytic activities of single-crystalline ZnGa2O4 nanoprisms by the coexposed 111 and 110 facets. Nanoscale. 2017;9(9):3206. https://doi.org/10.1039/c6nr09930k.

    Article  CAS  PubMed  Google Scholar 

  15. Yu WB, Liu J, Yi M, Yang JX, Dong WD, Wang C, Zhao H, Mohamed H, Wang Z, Chen LH, Li Y, Su BL. Active faceted Cu2O hollow nanospheres for unprecedented adsorption and visible-light degradation of pollutants. J Colloid Interface Sci. 2020;565(1):207. https://doi.org/10.1016/j.jcis.2020.01.022.

    Article  CAS  PubMed  Google Scholar 

  16. Liu LZ, Li MT, Chen F, Huang HW. Recent advances on single-atom catalysts for CO2 reduction. Small Struct. 2022;4(3):2200188. https://doi.org/10.1002/sstr.202200188.

    Article  CAS  Google Scholar 

  17. D’Arienzo M, Carbajo J, Bahamonde A, Crippa M, Polizzi S, Scotti R, Wahba L, Morazzoni F. Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to eva luate the role of crystal facets in photocatalytic processes. J Am Chem Soc. 2011;133(44):17652. https://doi.org/10.1021/ja204838s.

    Article  CAS  PubMed  Google Scholar 

  18. Sun SD, He LP, Yang M, Cui J, Liang SH. Facet junction engineering for photocatalysis: a comprehensive review on elementary knowledge, facet-synergistic mechanisms, functional modifications, and future perspectives. Adv Func Mater. 2022;32(1):2106982. https://doi.org/10.1002/adfm.202106982.

    Article  CAS  Google Scholar 

  19. Yu JG, Low JX, Xiao W, Zhou P, Jaroniec M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J Am Chem Soc. 2014;136(25):8839. https://doi.org/10.1021/ja5044787.

    Article  CAS  PubMed  Google Scholar 

  20. Wen FY, Li C. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res. 2013;46(11):2355. https://doi.org/10.1021/ar300224u.

    Article  CAS  PubMed  Google Scholar 

  21. Liu GS, Zhu YK, Yan Q, Wang H, Wu P, Shen YL, Doekhi-Bennani Y. Tuning electron transfer by crystal facet engineering of BiVO4 for boosting visible-light driven photocatalytic reduction of bromate. Sci Total Environ. 2021;762:143086. https://doi.org/10.1016/j.scitotenv.2020.143086.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang WC, Ni CW, Zhang LC, Shi M, Qu JS, Zhou HP, Zhang CB, Chen RT, Wang XL, Li C, Li RG. Tuning the anisotropic facet of lead chromate photocatalysts to promote spatial charge separation. Angew Chem Int Ed. 2022;61(37):e202207161. https://doi.org/10.1002/anie.202207161.

    Article  CAS  Google Scholar 

  23. Huang MH, Naresh G, Chen HS. Facet-dependent electrical, photocatalytic, and optical properties of semiconductor crystals and their implications for applications. ACS Appl Mater Interfaces. 2018;10(1):4. https://doi.org/10.1021/acsami.7b15828.

    Article  CAS  PubMed  Google Scholar 

  24. Cui J, Zhang X, Huang HW, Yang M, Yang B, Yang Q, Liang SH, Sun SD. Mechanism insight into an unprecedented dual series-parallel photocharge separation in quaternary Cu2O facet junctions. Adv Func Mater. 2022;32(25):2111528. https://doi.org/10.1002/adfm.202111528.

    Article  CAS  Google Scholar 

  25. Li M, Yu SX, Huang HW, Li XW, Feng YB, Wang C, Wang YG, Ma T, Guo L, Zhang YH. Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew Chem Int Ed Engl. 2019;58(28):9517. https://doi.org/10.1002/anie.201904921.

    Article  CAS  PubMed  Google Scholar 

  26. Wang D, Yin FX, Cheng B, Xia Y, Yu JG, Ho WK. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Nanosci Nanometrol Rare Metals. 2021;40(9):2369. https://doi.org/10.1007/s12598-021-01731-2.

    Article  CAS  Google Scholar 

  27. Yang C, Zhang GH, Meng Y, Pan GX, Ni ZM, Xia SJ. Direct Z-scheme CeO2@LDH core-shell heterostructure for photodegradation of Rhodamine B by synergistic persulfate activation. J Hazard Mater. 2021;408:124908. https://doi.org/10.1016/j.jhazmat.2020.124908.

    Article  CAS  PubMed  Google Scholar 

  28. Xu B, Yang H, Zhang QT, Yuan SS, Xie A, Zhang M, Ohno T. Design and synthesis of Sm, Y, La and Nd-doped CeO2 with a broom-like hierarchical structure: a photocatalyst with enhanced oxidation performance. ChemCatChem. 2020;12(9):2638. https://doi.org/10.1002/cctc.201902309.

    Article  CAS  Google Scholar 

  29. Xu B, Zhang QT, Yuan SS, Zhang M, Ohno T. Morphology control and photocatalytic characterization of yttrium-doped hedgehog-like CeO2. Appl Catal B. 2015;164(7):120. https://doi.org/10.1016/j.apcatb.2014.07.045.

    Article  CAS  Google Scholar 

  30. He W, Ran JY, Niu JT, Yang GP, Ou ZL, He Z. Insight into the effect of facet-dependent surface and oxygen vacancies of CeO2 for Hg removal: from theoretical and experimental studies. J Hazard Mater. 2020;397:122646. https://doi.org/10.1016/j.jhazmat.2020.122646.

    Article  CAS  PubMed  Google Scholar 

  31. Yuan SS, Zhang QT, Xu B, Jin ZY, Zhang Y, Yang Y, Zhang M, Ohno T. Porous cerium dioxide hollow spheres and their photocatalytic performance. RSC Adv. 2014;4(107):62255. https://doi.org/10.1039/c4ra12127a.

    Article  CAS  Google Scholar 

  32. Yang H, Jia L, Zhang ZP, Xu B, Zhang QT, Yuan SS, Xiao YH, Nan ZD, Zhang M, Zhang YC, Ohno T. Enhanced photocatalytic VOCs degradation performance on Fe-doped ceria under visible light. Appl Mater Today. 2022;29:101651. https://doi.org/10.1016/j.apmt.2022.101651.

    Article  Google Scholar 

  33. Grabchenko MV, Mamontov GV, Zaikovskii VI, La Parola V, Liotta LF, Vodyankina OV. The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl Catal B. 2020;260:118148. https://doi.org/10.1016/j.apcatb.2019.118148.

    Article  CAS  Google Scholar 

  34. López JM, Gilbank AL, García T, Solsona B, Agouram S, Torrente-Murciano L. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl Catal B. 2015;174–175(3):403. https://doi.org/10.1016/j.apcatb.2015.03.017.

    Article  CAS  Google Scholar 

  35. Chang SJ, Li M, Hua Q, Zhang LJ, Ma YS, Ye BJ, Huang WX. Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J Catal. 2012;293(6):195. https://doi.org/10.1016/j.jcat.2012.06.025.

    Article  CAS  Google Scholar 

  36. Choudhury B, Choudhury A. Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Mater Chem Phys. 2012;131(3):666. https://doi.org/10.1016/j.matchemphys.2011.10.032.

    Article  CAS  Google Scholar 

  37. Xing YL, Jiang XJ, Han L, Jin XY, Ni G, Peng YG, Yong XJ, Wang X. Efficient degradation of tetracycline over vacancy-modified Cu-doped Bi2O2S via peroxymonosulfate activation and photocatalysis. J Clean Prod. 2023;400:136631. https://doi.org/10.1016/j.jclepro.2023.136631.

    Article  CAS  Google Scholar 

  38. Yang H, Jia L, Zhang ZP, Xu B, Liu ZL, Zhang QT, Cao Y, Nan ZD, Zhang M, Ohno T. Novel cerium-based MOFs photocatalyst for photocarrier collaborative performance under visible light. J Catal. 2022;405(11):74. https://doi.org/10.1016/j.jcat.2021.11.017.

    Article  CAS  Google Scholar 

  39. Hassan MH, Andreescu D, Andreescu S. Cerium oxide nanoparticles stabilized within metal–organic frameworks for the degradation of nerve agents. ACS Appl Nano Mater. 2020;3(4):3288. https://doi.org/10.1021/acsanm.0c00015.

    Article  CAS  Google Scholar 

  40. Yang J, Hu SY, Fang YR, Hoang S, Li L, Yang WW, Liang ZF, Wu J, Hu JP, Xiao W, Pan CQ, Luo Z, Ding J, Zhang LZ, Guo YB. Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation. ACS Catal. 2019;9(11):9751. https://doi.org/10.1021/acscatal.9b02408.

    Article  CAS  Google Scholar 

  41. Li H, Li J, Ai ZH, Jia FL, Zhang LZ. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem Int Ed Engl. 2018;57(1):122. https://doi.org/10.1002/anie.201705628.

    Article  CAS  PubMed  Google Scholar 

  42. Xu B, Zhang QT, Yuan SS, Liu SX, Zhang M, Ohno T. Synthesis and photocatalytic performance of yttrium-doped CeO2 with a hollow sphere structure. Catal Today. 2017;281:135. https://doi.org/10.1016/j.cattod.2016.06.049.

    Article  CAS  Google Scholar 

  43. Ma YJ, Jiang J, Zhu AQ, Tan PF, Bian Y, Zeng WX, Cui H, Pan J. Enhanced visible-light photocatalytic degradation by Mn3O4/CeO2 heterojunction: a Z-scheme system photocatalyst. Inorganic Chem Front. 2018;5(10):2579. https://doi.org/10.1039/c8qi00749g.

    Article  CAS  Google Scholar 

  44. Lin MJ, Jing GH, Shen HZ, Yuan CS, Huang ZW, Wu XM, Liu CW. Mechanism of enhancement of photooxidation of Hg0 by CeO2-TiO2: effect of band structure on the formation of free radicals. Chem Eng J. 2020;382:122827. https://doi.org/10.1016/j.cej.2019.122827.

    Article  CAS  Google Scholar 

  45. Jia T, Wu J, Xiao YX, Liu QZ, Wu Q, Qi YF, Qi XM. Self-grown oxygen vacancies-rich CeO2/BiOBr Z-scheme heterojunction decorated with rGO as charge transfer channel for enhanced photocatalytic oxidation of elemental mercury. J Colloid Interface Sci. 2021;587(12):402. https://doi.org/10.1016/j.jcis.2020.12.005.

    Article  CAS  PubMed  Google Scholar 

  46. Venkataswamy P, Jampaiah D, Kandjani AE, Sabri YM, Reddy BM, Vithal M. Transition (Mn, Fe) and rare earth (La, Pr) metal doped ceria solid solutions for high performance photocatalysis: effect of metal doping on catalytic activity. Res Chem Intermed. 2018;44(4):2523. https://doi.org/10.1007/s11164-017-3244-5.

    Article  CAS  Google Scholar 

  47. Kumar M, Yun JH, Bhatt V, Singh B, Kim J, Kim JS, Kim BS, Lee CY. Role of Ce3+ valence state and surface oxygen vacancies on enhanced electrochemical performance of single step solvothermally synthesized CeO2 nanoparticles. Electrochim Acta. 2018;284(7):709. https://doi.org/10.1016/j.electacta.2018.07.184.

    Article  CAS  Google Scholar 

  48. Hussain I, Tanimu G, Ahmed S, Aniz CU, Alasiri H, Alhooshani K. A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2-based catalysts: uncovering, influencing, and tuning strategies. Int J Hydrogen Energy. 2022;48(28):849. https://doi.org/10.1016/j.ijhydene.2022.08.086.

    Article  CAS  Google Scholar 

  49. Zhang Y, Lu JC, Zhang LM, Fu T, Zhang J, Zhu X, Gao XY, He DD, Luo YM, Dionysiou DD, Zhu WJ. Investigation into the catalytic roles of oxygen vacancies during gaseous styrene degradation process via CeO2 catalysts with four different morphologies. Appl Catal B. 2022;309:121249. https://doi.org/10.1016/j.apcatb.2022.121249.

    Article  CAS  Google Scholar 

  50. Yang B, Zhang MJ, Zeng YQ, Meng FY, Ma JQ. Promotional effect of surface fluorine species on CeO2 catalyst for toluene oxidation. Molecular Catalysis. 2021;512:111771. https://doi.org/10.1016/j.mcat.2021.111771.

    Article  CAS  Google Scholar 

  51. Dong Y, Gao TY, Yuan SS, Zhu CZ, Yang L, Chen YM, Wang XJ, Yin Y, Chen CX, Tang L, Ohno T. Ultrathin TiO2(B) nanosheets-decorated hollow CoFeP cube as PMS activator for enhanced photocatalytic activity. Appl. Surf. Sci. 2024;643:158667. https://doi.org/10.1016/j.apsusc.2023.158667.

  52. Yang L, Gao TY, Yuan SS, Dong Y, Chen YM, Wang XJ, Chen CX, Tang L, Ohno T. Spatial charge separated two-dimensional/two-dimensional Cu-In2S3/CdS heterojunction for boosting photocatalytic hydrogen production. J Colloid Interf. Sci. 2023;652(Pt B):1503. https://doi.org/10.1016/j.jcis.2023.08.149.

  53. Wang XJ, Yuan SS, Yang L, Dong Y, Chen YM, Zhang WX, Chen CX, Zhang QT, Ohno T. Spatially charge-separated 2D homojunction for photocatalytic hydrogen production. Rare Met. 2023;42(12):3952. https://doi.org/10.1007/s12598-023-02505-8

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21805191 and 22205084), Project funded by China Postdoctoral Science Foundation (No. 2023M741039), Project funded by National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization (SF202303), Project Funded by Yangzhou University (137013308), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010982), Shenzhen Stable Support Project (No. 20200812122947002), the Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Yangzhou University, No. XKYCX20_014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Xu, Hui Yang or Sai-Sai Yuan.

Ethics declarations

Conflict of interest

Ming Zhang is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9481 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Jia, L., Yang, H. et al. Improved photocatalytic performance of acetaldehyde degradation via crystal plane regulation on truncated octahedral CeO2. Rare Met. 43, 2026–2038 (2024). https://doi.org/10.1007/s12598-023-02566-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02566-9

Keywords

Navigation