Skip to main content
Log in

Enhanced hydrogen evolution reaction in FePt film with remanence due to decrease in domain walls

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As an effective strategy to improve the properties of electrocatalysts, magnetic field-assisted electrocatalytic water splitting has attracted increasing attention recently. However, the corresponding enhancements mostly depend on the exertion of an external magnetic field during electrochemical reactions, which results in a high cost of industrial production, and makes the magnetic field manipulation of electrocatalysis become a challenging task. In this work, instead of the external magnetic field, a bias magnetic field is self-supplied by the remanence state of a ferromagnetic electrocatalyst of FePt. Owing to the assistance of this bias magnetic field, the FePt film in the remanence state shows the overpotential of 229 mV during hydrogen evolution reaction, which is much lower than that in its demagnetization state (283 mV). Our findings demonstrate that the remanence in ferromagnetic electrocatalysts can improve the catalytic performance, which is attributed to the decrease in domain walls.

Graphical abstract

摘要

近期, 作为一种提高电催化性能的有效策略, 磁场辅助下的电催化分解水引起了诸多关注。然而, 相应的性能提升大多需要在电化学反应过程中引入外磁场, 这提高了工业生产时的成本, 也使磁场操控电催化成为了一项具有挑战性的任务。本工作中, 剩磁状态下的铁磁性电催化剂FePt产生的自供给偏置磁场代替了催化反应原本所需的外磁场。在这一偏置磁场的帮助下, 处于剩磁状态的FePt薄膜在析氢反应中的过电势为229 mV, 远低于退磁状态下的测量值 (283 mV) 。我们的研究表明, 铁磁性催化剂中的剩磁可以改善固有的催化性能, 这一提升归因于剩磁状态下畴壁的减少。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294. https://doi.org/10.1038/nature11475.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Li YR, Li MX, Li SN, Liu YJ, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021;40(12):3406. https://doi.org/10.1007/s12598-021-01747-8.

    Article  CAS  Google Scholar 

  3. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998. https://doi.org/10.1126/science.aad4998.

  4. Shi WH, Jia CZ, Lu BW, Ma ZH. Hydrogen storage properties of MgH2 with doping catalyst. Chin J Rare Met. 2022;46(01):87. https://doi.org/10.13373/j.cnki.cjrm.XY20100027.

    Article  CAS  Google Scholar 

  5. Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature. 2006;443(7107):63. https://doi.org/10.1038/nature05118.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

    Article  CAS  Google Scholar 

  7. Sajjad S, Wang C, Deng CW, Ji F, Ali T, Shezad B, Ji HQ, Yan CL. Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide. Rare Met. 2022;41(6):1851. https://doi.org/10.1007/s12598-021-01948-1.

    Article  CAS  Google Scholar 

  8. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5(11):909. https://doi.org/10.1038/nmat1752.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hao R, Feng QL, Wang XJ, Zhang YC, Li KS. Morphology-controlled growth of large-area PtSe2 films for enhanced hydrogen evolution reaction. Rare Met. 2022;41(4):1314. https://doi.org/10.1007/s12598-021-01877-z.

    Article  CAS  Google Scholar 

  10. Liu DB, Li XY, Chen SM, Yan H, Wang CD, Wu CQ, Haleem YA, Duan S, Lu JL, Ge BH, Ajayan PM, Luo Y, Jiang J, Song L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy. 2019;4(6):512. https://doi.org/10.1038/s41560-019-0402-6.

    Article  ADS  CAS  Google Scholar 

  11. Wang JH, Yan MY, Zhao KN, Liao XB, Wang PY, Pan XL, Yang W, Mai LQ. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv Mater. 2017;29(7):1604464. https://doi.org/10.1002/adma.201604464.

    Article  CAS  Google Scholar 

  12. Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D, López N, Galán-Mascarós JR. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy. 2019;4(6):519. https://doi.org/10.1038/s41560-019-0404-4.

    Article  ADS  CAS  Google Scholar 

  13. Shi Y, Wang J, Wang C, Zhai TT, Bao WJ, Xu JJ, Xia XH, Chen HY. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J Am Chem Soc. 2015;137(23):7365. https://doi.org/10.1021/jacs.5b01732.

    Article  CAS  PubMed  Google Scholar 

  14. Chen HX, Xu H, Song ZR, Liu Y, Cui H, Gao JK. Pressure-induced bimetallic carbon nanotubes from metal-organic frameworks as optimized bifunctional electrocatalysts for water splitting. Rare Met. 2023;42(1):155. https://doi.org/10.1007/s12598-022-02121-y.

    Article  CAS  Google Scholar 

  15. Li GW, Yang Q, Manna K, Mu QG, Fu CG, Sun Y, Felser C. Magnetocatalysis: the interplay between the magnetic field and electrocatalysis. CCS Chem. 2021;3(10):2259. https://doi.org/10.31635/ccschem.021.202100991.

  16. Zhou WD, Chen MY, Guo MM, Hong AJ, Yu T, Luo XF, Yuan CL, Lei W, Wang SG. Magnetic enhancement for hydrogen evolution reaction on ferromagnetic MoS2 catalyst. Nano Lett. 2020;20(4):2923. https://doi.org/10.1021/acs.nanolett.0c00845.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Elias L, Chitharanjan HA. Effect of magnetic field on HER of water electrolysis on Ni–W alloy. Electrocatalysis. 2017;8(4):375. https://doi.org/10.1007/s12678-017-0382-x.

    Article  CAS  Google Scholar 

  18. Hunt C, Zhang ZS, Ocean K, Jansonius RP, Abbas M, Dvorak DJ, Kurimoto A, Lees EW, Ghosh S, Turkiewicz A, Garces Pineda FA, Fork DK, Berlinguette CP. Quantification of the effect of an external magnetic field on water oxidation with cobalt oxide anodes. J Am Chem Soc. 2022;144(2):733. https://doi.org/10.1021/jacs.1c08759.

    Article  CAS  PubMed  Google Scholar 

  19. Li MH, Wang ZG, Wang YJ, Li JF, Viehland D. Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl Phys Lett. 2013;102(8):082404. https://doi.org/10.1063/1.4794056.

  20. Meng ZG, Xiao F, Wei ZX, Guo XY, Zhu Y, Liu YR, Li GJ, Yu ZQ, Shao MH, Wong WY. Direct synthesis of L10-FePt nanoparticles from single-source bimetallic complex and their electrocatalytic applications in oxygen reduction and hydrogen evolution reactions. Nano Res. 2019;12(12):2954. https://doi.org/10.1007/s12274-019-2537-y.

    Article  Google Scholar 

  21. Li Q, Wu LH, Wu G, Su D, Lv HF, Zhang S, Zhu WL, Casimir A, Zhu HY, Mendoza-Garcia A, Sun SH. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015;15(4):2468. https://doi.org/10.1021/acs.nanolett.5b00320.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Varanda LC, Jafelicci M. Self-assembled FePt nanocrystals with large coercivity: reduction of the fcc-to-L10 ordering temperature. J Am Chem Soc. 2006;128(34):11062. https://doi.org/10.1021/ja060711i.

    Article  CAS  PubMed  Google Scholar 

  23. Hsu YN, Jeong S, Laughlin DE, Lambeth DN. Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films. J Appl Phys. 2001;89(11):7068. https://doi.org/10.1063/1.1360683.

    Article  ADS  CAS  Google Scholar 

  24. Okamoto S, Kikuchi N, Kitakami O, Miyazaki T, Shimada Y, Fukamichi K. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys Rev B. 2002;66(2):024413. https://doi.org/10.1103/PhysRevB.66.024413.

  25. Xu YF, Chen JS, Wang JP. In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100−xRux underlayer at low substrate temperature. Appl Phys Lett. 2002;80(18):3325. https://doi.org/10.1063/1.1476706.

    Article  ADS  CAS  Google Scholar 

  26. Schwickert MM, Hannibal KA, Toney MF, Best M, Folks L, Thiele JU, Kellock AJ, Weller D. Temperature dependent chemical ordering in FePt(001) and FePt(110) films. J Appl Phys. 2000;87(9):6956. https://doi.org/10.1063/1.372898.

    Article  ADS  CAS  Google Scholar 

  27. Kim CS, Choi D, Chung S, Wise A, Dang YY, Kryder MH. Surface roughness and magnetic properties of L10 FePt films on MgO/CrRu/TiN. J Appl Phys. 2012;112(2):023907. https://doi.org/10.1063/1.4737573.

  28. Thiele JU, Folks L, Toney MF, Weller DK. Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L10 films. J Appl Phys. 1998;84(10):5686. https://doi.org/10.1063/1.368831.

    Article  ADS  CAS  Google Scholar 

  29. Sun AC, Hsu JH, Kuo PC, Huang HL, Lu HC, Wang SF. Thickness limit in perpendicular magnetic anisotropy L10 FePt (001) thin film. J Magn Magn Mater. 2007;310(2):2650. https://doi.org/10.1016/j.jmmm.2006.10.1113.

    Article  ADS  CAS  Google Scholar 

  30. Yang YT, Wen JH, Xiong YQ, Ma L, Lv LY, Cao QQ, Wang DH, Du YW. Electrical controlled magnetism in FePt film with the coexistence of two phases. Appl Phys Lett. 2015;106(8):082402. https://doi.org/10.1063/1.4913616.

  31. Brown G, Kraczek B, Janotti A, Schulthess TC, Stocks GM, Johnson DD. Competition between ferromagnetism and antiferromagnetism in FePt. Phys Rev B. 2003;68(5):052405. https://doi.org/10.1103/PhysRevB.68.052405.

  32. Burkert T, Eriksson O, Simak SI, Ruban AV, Sanyal B, Nordström L, Wills JM. Magnetic anisotropy of L10 FePt and Fe1−xMnxPt. Phys Rev B. 2005;71(13):134411. https://doi.org/10.1103/PhysRevB.71.134411.

  33. Chen JW, Ling YC, Qu DQ, Huang LA, Li JJ, Tang PJ, He AP, Jin X, Zhou Y, Xu MX, Du J, Han ZD, Xu QY. Enhanced electrocatalysis of NiMnIn Heusler alloy films for hydrogen evolution reaction by magnetic field. J Alloys Compd. 2021;877:160271. https://doi.org/10.1016/j.jallcom.2021.160271.

  34. Zhang H, Jiang QF, Hadden JHL, Xie F, Riley DJ. Pd ion-exchange and ammonia etching of a prussian blue analogue to produce a high-performance water-splitting catalyst. Adv Funct Mater. 2020;31(10):2008989. https://doi.org/10.1002/adfm.202008989.

    Article  CAS  Google Scholar 

  35. Gennero de Chialvo MR, Chialvo AC. Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes. Electrochim Acta. 1998;44(5):841. https://doi.org/10.1016/S0013-4686(98)00233-3.

  36. Gennero de Chialvo MR, Chialvo AC. Hydrogen evolution reaction: analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. J Electroanal Chem. 1994;372(1–2):209. https://doi.org/10.1016/0022-0728(93)03043-O.

    Article  Google Scholar 

  37. Jiang WY, Wu XX, Chang JQ, Ma YH, Song LT, Chen ZX, Liang C, Liu XF, Zhang Y. Integrated hetero-nanoelectrodes for plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Res. 2020;14(4):1195. https://doi.org/10.1007/s12274-020-3171-4.

    Article  ADS  CAS  Google Scholar 

  38. Park JH, Ramasamy P, Kim S, Kim YK, Ahilan V, Shanmugam S, Lee JS. Hybrid metal-Cu2S nanostructures as efficient co-catalysts for photocatalytic hydrogen generation. Chem Commun. 2017;53(22):3277. https://doi.org/10.1039/c7cc00071e.

    Article  CAS  Google Scholar 

  39. Mohan S, Saravanan G, Bund A. Role of magnetic forces in pulse electrochemical deposition of Ni-nano Al2O3 composites. Electrochim Acta. 2012;64:94. https://doi.org/10.1016/j.electacta.2011.12.123.

    Article  CAS  Google Scholar 

  40. Hinzke D, Kazantseva N, Nowak U, Mryasov ON, Asselin P, Chantrell RW. Domain wall properties of FePt: From Bloch to linear walls. Phys Rev B. 2008;77(9):094407. https://doi.org/10.1103/PhysRevB.77.094407.

    Article  ADS  CAS  Google Scholar 

  41. Hinzke D, Nowak U, Chantrell RW, Mryasov ON. Orientation and temperature dependence of domain wall properties in FePt. Appl Phys Lett. 2007;90(8):082507. https://doi.org/10.1063/1.2696353.

    Article  ADS  CAS  Google Scholar 

  42. Kaushik N, Sharma P, Yubuta K, Makino A, Inoue A. Domain wall assisted magnetization switching in (111) oriented L10 FePt grown on a soft magnetic metallic glass. Appl Phys Lett. 2010;97(7):072510. https://doi.org/10.1063/1.3479054.

    Article  ADS  CAS  Google Scholar 

  43. Li ZX, Yu CC, Kang YK, Zhang X, Wen YY, Wang ZK, Ma C, Wang C, Wang KW, Qu XL, He M, Zhang YW, Song WY. Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction. Natl Sci Rev. 2021;8(7):nwaa204. https://doi.org/10.1093/nsr/nwaa204.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Dronskowski R, Bloechl PE. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem. 1993;97(33):8617. https://doi.org/10.1021/j100135a014.

    Article  CAS  Google Scholar 

  45. Li FF, Ai HQ, Liu D, Lo KH, Pan H. An enhanced oxygen evolution reaction on 2D CoOOH via strain engineering: an insightful view from spin state transition. J Mater Chem A. 2021;9(33):17749. https://doi.org/10.1039/D1TA03412J.

    Article  ADS  CAS  Google Scholar 

  46. Wang C, Liu YY, Yuan J, Wu P, Zhou W. Scaling law of hydrogen evolution reaction for InSe monolayer with 3d transition metals doping and strain engineering. J Energy Chem. 2020;41:107. https://doi.org/10.1016/j.jechem.2019.05.007.

    Article  Google Scholar 

  47. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci. 2011;108(3):937. https://doi.org/10.1073/pnas.1006652108.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52101215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dun-Hui Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8894 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Liu, DX., Li, J. et al. Enhanced hydrogen evolution reaction in FePt film with remanence due to decrease in domain walls. Rare Met. 43, 1108–1115 (2024). https://doi.org/10.1007/s12598-023-02491-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02491-x

Keywords

Navigation