Skip to main content
Log in

Modulation of d-orbital to realize enriched electronic cobalt sites in cobalt sulfide for enhanced hydrogen evolution in electrocatalytic water/seawater splitting

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Herein, a novel single-atomic Pt doping and interface-rich CoS/Co(OH)2 (Pt-CoS/Co(OH)2/C) electrocatalyst has been successfully prepared. Benefiting from precise regulation of d-orbital electronic structure modulation on Co site, Pt-CoS/Co(OH)2/C exhibited remarkable HER activity and high stability for hydrogen evolution in splitting both water (73 mV@10 mA·cm−2) and seawater (87 mV@10 mA·cm−2). Notably, atomic Pt doping was introduced into CoS/Co(OH)2, which could produce local unbalanced Coulombic force and significantly increased the number of S vacancies, and then expose abundant Co sites. Meantime, Co(OH)2 in Pt-CoS/Co(OH)2/C could act as the adsorption sites for H2O in hydrogen evolution reaction process. Density functional theory results also proved that atomic Pt doping, S vacancies and Co(OH)2 coupling could result in the formation of enriched electronic Co sites and optimize \({\text d}_{{z}^{2}}\) orbital electronic structure, and then realize the depth upward shift of d-band center and enhance the adsorption of H* on Co sites.

Graphical abstract

摘要

本文成功制备了一种单原子Pt掺杂、界面丰富的CoS/Co(OH)2 (Pt-CoS/Co(OH)2/C)电催化剂。得益于Co位点d轨道电子结构的精确调控,Pt-CoS/Co(OH)2/C在裂解水(73 mV@10 mA·cm−2)和海水(87 mV@10 mA·cm−2)时表现出显著的HER活性和较高的析氢稳定性。值得注意的是,在CoS/Co(OH)2中引入原子Pt掺杂产生了局部不平衡库仑力,显著增加了S空位的数量,从而暴露出丰富的Co位。同时,Pt-CoS/Co(OH)2/C中的Co(OH)2可作为析氢反应(HER)过程中H2O的吸附位点。密度泛函理论(DFT)结果也证明,原子Pt掺杂、S空位和Co(OH)2耦合可导致富集电子的Co活性位的形成,优化轨道电子结构,进而实现d带中心深度上移,增强H*在Co位上的吸附。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu J, Hu L, Zhao P, Lee LYS, Wong KY. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev. 2020;120(2):851. https://doi.org/10.1021/acs.chemrev.9b00248.

    Article  CAS  Google Scholar 

  2. Cui H, Liao HX, Wang ZL, Xie JP, Tan PF, Chu DW, Jun P. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 2022;41(8):2606. https://doi.org/10.1007/s12598-022-02003-3.

    Article  CAS  Google Scholar 

  3. Shen B, Huang H, Jiang Y, Xue Y, He H. 3D interweaving MXene–graphene network–confined Ni–Fe layered double hydroxide nanosheets for enhanced hydrogen evolution. Electrochim Acta. 2022;407:139913. https://doi.org/10.1016/j.electacta.2022.139913.

    Article  CAS  Google Scholar 

  4. Li C, Zhao DH, Long HL, Li M. Recent advances in carbonized non-noble metal-organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021;40(10):2657. https://doi.org/10.1007/s12598-020-01694-w.

    Article  CAS  Google Scholar 

  5. Huang H, Xue Y, Xie Y, Yang Y, Yang L, He H, Jiang Q, Ying G. MoS2 quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts. Inorgan Chem Front. 2022;9:1171. https://doi.org/10.1039/d1qi01528a.

    Article  CAS  Google Scholar 

  6. Sun J, Zhou Y, Zhao Z, Meng X, Li Z. Modification strategies to improve electrocatalytic activity in seawater splitting: a review. J Mater Sci. 2022;57(41):19243. https://doi.org/10.1007/s10853-022-07875-5.

    Article  CAS  Google Scholar 

  7. Sun JP, Zhao Z, Li J, Li ZZ, Meng XC. Recent advances in electrocatalytic seawater splitting. Rare Met. 2023;42(3):751. https://doi.org/10.1007/s12598-022-02168-x.

    Article  CAS  Google Scholar 

  8. Fu WY, Lin YX, Wang MS, Si S, Wei L, Zhao XS, Wei YS. Sepaktakraw-like catalyst Mn-doped CoP enabling ultrastable electrocatalytic oxygen evolution at 100 mA·cm−2 in alkali media. Rare Met. 2022;41(9):3069. https://doi.org/10.1007/s12598-022-02006-0.

    Article  CAS  Google Scholar 

  9. He H, Chen Y, Yang C, Yang L, Jiang Q, Huang H. Constructing 3D interweaved MXene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution. J Energy Chem. 2022;67:483. https://doi.org/10.1016/j.jechem.2021.10.019.

    Article  CAS  Google Scholar 

  10. Fang XJ, Ren LP, Li F, Jiang ZX, Wang ZG. Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction. Rare Met. 2021;41(3):901. https://doi.org/10.1007/s12598-021-01819-9.

    Article  CAS  Google Scholar 

  11. Mosallanezhad A, Wei C, Ahmadian Koudakan P, Fang Y, Niu S, Bian Z, Liu B, Huang T, Pan H, Wang G. Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl Catal B Environ. 2022;315:121534. https://doi.org/10.1016/j.apcatb.2022.121534.

    Article  CAS  Google Scholar 

  12. Feng Y, Zhang T, Zhang J, Fan H, He C, Song J. 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction. Small. 2020;16:2002850. https://doi.org/10.1002/smll.202002850.

    Article  CAS  Google Scholar 

  13. Sun J, Huang Z, Huang T, Wang X, Wang X, Yu P, Zong C, Dai F, Sun D. Defect-rich porous CoS1.097/MoS2 hybrid microspheres as electrocatalysts for pH-universal hydrogen evolution. ACS Appl Energy Mater. 2019;2(10):7504. https://doi.org/10.1021/acsaem.9b01486.

    Article  CAS  Google Scholar 

  14. Zhou F, Zhou Y, Liu GG, Wang CT, Wang J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Met. 2021;40(12):3375. https://doi.org/10.1007/s12598-021-01735-y.

    Article  CAS  Google Scholar 

  15. Lin Z, Xiao B, Huang M, Yan L, Wang Z, Huang Y, Shen S, Zhang Q, Gu L, Zhong W. Realizing negatively charged metal atoms through controllable d-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Adv Energy Mater. 2022;12:2200855. https://doi.org/10.1002/aenm.202200855.

    Article  CAS  Google Scholar 

  16. Gong C, Li W, Lei Y, He X, Chen H, Du X, Fang W, Wang D, Zhao L. Interfacial engineering of ZIF-67 derived CoSe/Co(OH)2 catalysts for efficient overall water splitting. Compos Part B Eng. 2022;236:109823. https://doi.org/10.1016/j.compositesb.2022.109823.

    Article  CAS  Google Scholar 

  17. Sun YM, Xue ZQ, Liu QL, Jia YL, Li YL, Liu K, Lin YY, Liu M, Li GQ, Su CY. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat Commun. 2021;12:1369. https://doi.org/10.1038/s41467-021-21595-5.

    Article  CAS  Google Scholar 

  18. Tan H, Tang B, Lu Y, Ji Q, Lv L, Duan H, Li N, Wang Y, Feng S, Li Z, Wang C, Hu F, Sun Z, Yan W. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat Commun. 2022;13:2024. https://doi.org/10.1038/s41467-022-29710-w.

    Article  CAS  Google Scholar 

  19. Sun Y, Mao K, Shen Q, Zhao L, Shi C, Li X, Gao Y, Li C, Xu K, Xie Y. Surface electronic structure modulation of cobalt nitride nanowire arrays via selenium deposition for efficient hydrogen evolution. Adv Func Mater. 2021;32:2109792. https://doi.org/10.1002/adfm.202109792.

    Article  CAS  Google Scholar 

  20. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  21. Sheng M, Bin X, Yang Y, Tang Y, Que W. In situ electrosynthesis of MAX-derived electrocatalysts for superior hydrogen evolution reaction. Small. 2022;18(32):2203471. https://doi.org/10.1002/smll.202203471.

    Article  CAS  Google Scholar 

  22. Zhong W, Wang Z, Gao N, Huang L, Lin Z, Liu Y, Meng F, Deng J, Jin S, Zhang Q, Gu L. Coupled vacancy pairs in Ni-doped CoSe for improved electrocatalytic hydrogen production through topochemical deintercalation. Angew Chem Int Ed. 2020;59:22743. https://doi.org/10.1002/anie.202011378.

    Article  CAS  Google Scholar 

  23. Hao L, He H, Qin J, Ma C, Luo L, Yang L, Huang H. MXene nanosheets induce efficient iron selenide active sites to boost the electrocatalytic hydrogen evolution reaction. Inorg Chem. 2022;61(51):21087. https://doi.org/10.1021/acs.inorgchem.2c03666.

    Article  CAS  Google Scholar 

  24. Zhou KL, Wang Z, Han CB, Ke X, Wang C, Jin Y, Zhang Q, Liu J, Wang H, Yan H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat Commun. 2021;12:3783. https://doi.org/10.1038/s41467-021-24079-8.

    Article  CAS  Google Scholar 

  25. Wu Y, Ma J, Huang Y. Enhancing oxygen reduction reaction of Pt–Co/C nanocatalysts via synergetic effect between Pt and Co prepared by one-pot synthesis. Rare Met. 2023;42(1):146. https://doi.org/10.1007/s12598-022-02119-6.

    Article  CAS  Google Scholar 

  26. Zhou SZ, Jang H, Qin Q, Li ZJ, Kim MG, Ji XQ, Liu XE, Cho J. Ru atom-modified Co4N-CoF2 heterojunction catalyst for high-performance alkaline hydrogen evolution. Chem Eng J. 2021;414:128865. https://doi.org/10.1016/j.cej.2021.128865.

    Article  CAS  Google Scholar 

  27. Liu Y, Hua X, Xiao C, Zhou T, Huang P, Guo Z, Pan B, Xie Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J Am Chem Soc. 2016;138:5087. https://doi.org/10.1021/jacs.6b00858.

    Article  CAS  Google Scholar 

  28. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc. 2013;135:17881. https://doi.org/10.1021/ja4129636.

    Article  CAS  Google Scholar 

  29. Dong J, Zhang X, Huang J, Hu J, Chen Z, Lai Y. In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction. Chem Eng J. 2021;412:128556. https://doi.org/10.1016/j.cej.2021.128556.

    Article  CAS  Google Scholar 

  30. Yoon T, Kim KS. One-step synthesis of CoS-doped β-Co(OH)2@amorphous MoS2+x hybrid catalyst grown on nickel foam for high-performance electrochemical overall water splitting. Adv Funct Mater. 2016;26:7386. https://doi.org/10.1002/adfm.201602236.

    Article  CAS  Google Scholar 

  31. Ye S, Xiong W, Liao P, Zheng L, Ren X, He C, Zhang Q, Liu J. Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. J Mater Chem A. 2020;8:11246. https://doi.org/10.1039/d0ta02936j.

    Article  CAS  Google Scholar 

  32. Shen S, Wang Z, Lin Z, Song K, Zhang Q, Meng F, Gu L, Zhong W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv Mater. 2022;34:2110631. https://doi.org/10.1002/adma.202110631.

    Article  CAS  Google Scholar 

  33. Gou WY, Li JY, Gao W, Xia ZM, Zhang S, Ma YY. Downshifted d-band center of Ru/MWCNTs by turbostratic carbon nitride for efficient and robust hydrogen evolution in alkali. ChemCatChem. 2019;11:1970. https://doi.org/10.1002/cctc.201900006.

    Article  CAS  Google Scholar 

  34. Yang T, Xie H, Ma N, Liu E, Shi C, He C, Zhao N. Unraveling the mechanism of hydrogen evolution reaction on cobalt compound electrocatalysts. Appl Surf Sci. 2021;550:149355. https://doi.org/10.1016/j.apsusc.2021.149355.

    Article  CAS  Google Scholar 

  35. Dai Q, Wang L, Wang K, Sang X, Li Z, Yang B, Chen J, Lei L, Dai L, Hou Y. Accelerated water dissociation kinetics by electron-enriched cobalt sites for efficient alkaline hydrogen evolution. Adv Funct Mater. 2021;32:2109556. https://doi.org/10.1002/adfm.202109556.

    Article  CAS  Google Scholar 

  36. Shao J, Wan Z, Liu H, Zheng H, Gao T, Shen M, Qu Q, Zheng H. Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J Mater Chem A. 2014;2:12194. https://doi.org/10.1039/c4ta01966k.

    Article  CAS  Google Scholar 

  37. Ji X, Lin Y, Zeng J, Ren Z, Lin Z, Mu Y, Qiu Y, Yu J. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat Commun. 2021;12:1380. https://doi.org/10.1038/s41467-021-21742-y.

    Article  CAS  Google Scholar 

  38. Qiu Y, Liu S, Wei C, Fan J, Yao H, Dai L, Wang G, Li H, Su B, Guo X. Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-Universal hydrogen evolution reaction at large current density. Chem Eng J. 2022;427:131309. https://doi.org/10.1016/j.cej.2021.131309.

    Article  CAS  Google Scholar 

  39. Wang L, Chen MX, Yan Q, Xu S, Chu S, Chen P, Lin Y, Liang H. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci Adv. 2019;5(10):6332. https://doi.org/10.1126/sciadv.aax6322.

    Article  CAS  Google Scholar 

  40. Yin P, Luo X, Ma Y, Chu SQ, Chen S, Zheng X, Lu J, Wu XJ, Liang HW. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nat Commun. 2021;12:3135. https://doi.org/10.1038/s41467-021-23426-z.

    Article  CAS  Google Scholar 

  41. Zhang S, Zhang Z, Si Y, Li B, Deng F, Yang L, Liu X, Dai W, Luo S. Gradient hydrogen migration modulated with self-adapting S vacancy in copper-doped ZnIn2S4 nanosheet for photocatalytic hydrogen evolution. ACS Nano. 2021;15(9):15238. https://doi.org/10.1038/s41467-021-23426-z.

    Article  CAS  Google Scholar 

  42. Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Norskov JK, Zheng X. Corrigendum: activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater. 2016;15:364. https://doi.org/10.1038/nmat4564.

    Article  CAS  Google Scholar 

  43. Shi Y, Zhang D, Huang H, Miao H, Wu X, Zhao H, Zhan T, Chen X, Lai J, Wang L. Mixture phases engineering of PtFe nanofoams for efficient hydrogen evolution. Small. 2022;18:2106947. https://doi.org/10.1002/smll.202106947.

    Article  CAS  Google Scholar 

  44. Hu X, Song J, Luo J, Zhang H, Sun Z, Li C, Zheng S, Liu Q. Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. J Energy Chem. 2021;62:1. https://doi.org/10.1016/j.jechem.2021.03.003.

    Article  CAS  Google Scholar 

  45. Li L, Shi YX, Hou M, Zhang ZC. Research progress of copper-based materials for rlectrocatalytic CO2 reduction reaction. Chin J Rare Met. 2022;46(6):681. https://doi.org/10.13373/j.cnki.cjrm.XY21120017.

  46. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

  47. Wang YH, Li RQ, Li HB, Huang HL, Guo ZJ, Chen HY, Zheng Y, Qu KG. Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 2021;40(5):1040. https://doi.org/10.1007/s12598-020-01665-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shandong Provincial Natural Science Foundation (No. ZR2021QB056) and Taishan Scholars Foundation of Shandong province (No. tsqn201909058). The authors would like to thank Shiyanjia Lab (https://www.shiyanjia.com) for the XRD, SEM, XPS, etc., analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Zhen Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6665 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JP., Zheng, Y., Zhang, ZS. et al. Modulation of d-orbital to realize enriched electronic cobalt sites in cobalt sulfide for enhanced hydrogen evolution in electrocatalytic water/seawater splitting. Rare Met. 43, 511–521 (2024). https://doi.org/10.1007/s12598-023-02427-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02427-5

Keywords

Navigation