Skip to main content
Log in

Interface engineering of ZnSnO3-based heterojunctions for room-temperature methanol monitoring

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Detecting methanol is of great importance in the organic synthesis industry. Herein, the effective utilization of ZnSnO3-based microstructures for room-temperature methanol monitoring was realized through a template-free approach. ZnSnO3-based heterojunctions with different structures and morphologies were successfully synthesized via regulating the molar ratio of Zn2+ and Sn4+ sources. And room-temperature sensing properties towards methanol were investigated. Among them, ZnO/ZnSnO3 hollow microcubes exhibited an outstanding sensing performance including a high sensitivity (10.16) and a response/recovery time (14/75 s) and a limit of detection (490 × 10–9) towards 5 × 10–6 methanol. Additionally, the synergistic effects of hollow structure with larger specific surface areas (42.277 m2·g−1), the construction of n–n heterojunctions formed at ZnSnO3 and ZnO interfaces, the high percentage of dissociative and chemisorbed oxygen are the main causes of the elevated sensing characteristics. Besides, the practical experiment demonstrated that ZnO/ZnSnO3 was capable of on-field monitoring methanol in the chemical reaction utilizing H2 and CO2 as raw materials. Moreover, with the help of density functional theory calculations, the enhanced sensing properties of ZnO/ZnSnO3 are due to the special tuning effects of Zn ionic sites on methanol adsorption.

Graphical abstract

摘要

甲醇的检测在有机合成工业中具有重要意义。在此, 通过无模板方法实现了基于ZnSnO3的气敏材料在室温甲醇检测中的有效利用。通过调节Zn2+和Sn4+的摩尔比, 成功合成了具有不同结构和形貌的ZnSnO3基异质结。本文研究了该气敏材料对甲醇气体的室温传感特性。其中, ZnO/ZnSnO3中空立方体表现出优异的气敏性能, 包括对5 × 10–6 甲醇的高灵敏度 (10.16) 和快速响应/恢复速度 (14/75 s) 以及低检测限(490 × 10–9) 。此外, 中空结构具有较大比表面积(42.277 m2·g−1) 、在 ZnSnO3和ZnO界面形成的n-n异质结和高缺陷氧和表面吸附氧含量的协同作用是气敏特性提升的主要原因。此外, 实测结果表明ZnO/ZnSnO3能够检测以H2和CO2为原料的化学反应中的甲醇。此外, 借助密度泛函理论计算, ZnO/ZnSnO3增强的气敏性能是由于Zn离子位点对甲醇吸附的特殊调节作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dong C, Yang JJ, Xie LH, Cui GL, Fang WH, Li JR. Catalytic ozone decomposition and adsorptive VOCs removal in bimetallic metal-organic frameworks. Nat Commun. 2022;13(1):4991. https://doi.org/10.1038/s41467-022-32678-2.

    Article  CAS  Google Scholar 

  2. Acharyya S, Nag S, Kimbahune S, Ghose A, Pal A, Guha PK. Selective discrimination of VOCs applying gas sensing kinetic analysis over a metal oxide-based chemiresistive gas sensor. ACS Sens. 2021;6(6):2218. https://doi.org/10.1021/acssensors.1c00115.

    Article  CAS  Google Scholar 

  3. Wang MC, Zhang Z, Zhong HX, Huang X, Li W, Hambsch M, Zhang PP, Wang ZY, St Petkov P, Heine T, Mannsfeld SCB, Feng XL, Dong RH. Surface-modified phthalocyanine-based two-dimensional conjugated metal-organic framework films for polarity-selective chemiresistive sensing. Angew Chem Int Ed. 2021;60(34):18666. https://doi.org/10.1002/anie.202104461.

    Article  CAS  Google Scholar 

  4. Zhang PP, Zhao F, Shi W, Lu HY, Zhou XY, Guo YH, Yu GH. Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle. Adv Mater. 2022;34(12):2110548. https://doi.org/10.1002/adma.202110548.

    Article  CAS  Google Scholar 

  5. Li MQ, Yang RW, Zhang H, Wang SL, Chen D, Lin SY. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019;290:32. https://doi.org/10.1016/j.foodchem.2019.03.124.

    Article  CAS  Google Scholar 

  6. Wu XY, Li Y, Zhang GK, Chen H, Li J, Wang K, Pan Y, Zhao Y, Sun YF. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J Am Chem Soc. 2019;141(13):5267. https://doi.org/10.1021/jacs.8b12928.

    Article  CAS  Google Scholar 

  7. Lu WY, Su XY, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. Metabolite measurement: Pitfalls to avoid and practices to follow. Annu Rev Biochem. 2017;86:277. https://doi.org/10.1146/annurev-biochem-061516-044952.

    Article  CAS  Google Scholar 

  8. Xu JY, Liu KW, Zhang C. Electronic nose for volatile organic compounds analysis in rice aging. Trends Food Sci Technol. 2021;109:83. https://doi.org/10.1016/j.tifs.2021.01.027.

    Article  CAS  Google Scholar 

  9. Li DY, Lu YL, Zhang C. Research progress of functional coatings prepared by suspension plasma spraying. Chin J Rare Met. 2022;46(11):1506. https://doi.org/10.13373/j.cnki.cjrm.XY21050002.

    Article  Google Scholar 

  10. Zhang C, Xu JY, Li HP, Liao HL. Role of ruthenium incorporation on room-temperature nonanal sensing properties of Ru-loaded urchin-like W18O49 hierarchical nanostructure. Sens Actuator B Chem. 2022;353:131096. https://doi.org/10.1016/j.snb.2021.131096.

    Article  CAS  Google Scholar 

  11. Yang HM, Ma SY, Yang GJ, Jin WX, Wang TT, Jiang XH, Li WQ. High sensitive and low concentration detection of methanol by a gas sensor based on one-step synthesis α-Fe2O3 hollow spheres. Mater Lett. 2016;169:73. https://doi.org/10.1016/j.matlet.2016.01.098.

    Article  CAS  Google Scholar 

  12. Song LM, Zhao B, Ju XN, Liu L, Gong YM, Chen WB, Lu BL. Comparative study of methanol gas sensing performance for SnO2 nanostructures by changing their morphology. Mater Sci Semicond Process. 2020;111:104986. https://doi.org/10.1016/j.mssp.2020.104986.

    Article  CAS  Google Scholar 

  13. Wang YC, Wu JM. Effect of controlled oxygen vacancy on H2-production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv Funct Mater. 2019;30(5):1907619. https://doi.org/10.1002/adfm.201907619.

    Article  CAS  Google Scholar 

  14. Zhang H, Zhang DZ, Wang DY, Xu ZY, Yan Y, Zhang B. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Met. 2022;41(9):3117. https://doi.org/10.1007/s12598-022-02031-z.

    Article  CAS  Google Scholar 

  15. Sá BS, Zito CA, Perfecto TM, Volanti DP. Porous ZnSnO3 nanocubes as a triethylamine sensor. Sens Actuator B Chem. 2021;338:129869. https://doi.org/10.1016/j.snb.2021.129869.

    Article  CAS  Google Scholar 

  16. Zhang JT, Jia XH, Lian DD, Yang J, Wang SZ, Li Y, Song HJ. Enhanced selective acetone gas sensing performance by fabricating ZnSnO3/SnO2 concave microcube. Appl Surf Sci. 2021;542:148555. https://doi.org/10.1016/j.apsusc.2020.148555.

    Article  CAS  Google Scholar 

  17. Cheng PF, Lv L, Wang YL, Zhang Y, Zhang YQ, Lei ZH, Xu LP. SnO2/ZnSnO3 double-shelled hollow microspheres based high-performance acetone gas sensor. Sens Actuator B Chem. 2021;332:129212. https://doi.org/10.1016/j.snb.2020.129212.

    Article  CAS  Google Scholar 

  18. Jia XH, Tian MG, Dai RR, Lian DD, Han S, Wu XY, Song HJ. One-pot template-free synthesis and highly ethanol sensing properties of ZnSnO3 hollow microspheres. Sens Actuator B Chem. 2017;240:376. https://doi.org/10.1016/j.snb.2016.08.146.

    Article  CAS  Google Scholar 

  19. Yan Y, Liu JY, Zhang HS, Song DL, Li JQ, Yang PP, Zhang ML, Wang J. One-pot synthesis of cubic ZnSnO3/ZnO heterostructure composite and enhanced gas-sensing performance. J Alloys Compd. 2019;780:193. https://doi.org/10.1016/j.jallcom.2018.11.310.

    Article  CAS  Google Scholar 

  20. Sasmal A, Medda SK, Devi PS, Sen S. Nano-ZnO decorated ZnSnO3 as efficient fillers in PVDF matrixes: toward simultaneous enhancement of energy storage density and efficiency and improved energy harvesting activity. Nanoscale. 2020;12(40):20908. https://doi.org/10.1039/d0nr02057e.

    Article  CAS  Google Scholar 

  21. Yin YY, Shen YB, Zhou PF, Liu R, Li A, Zhao SK, Liu WG, Wei DZ, Wei KF. Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor. Appl Surf Sci. 2020;509:145335. https://doi.org/10.1016/j.apsusc.2020.145335.

    Article  CAS  Google Scholar 

  22. Tuc Altaf C, Coskun O, Kumtepe A, Sankir M, Sankir ND. Bifunctional ZnO nanowire/ZnSnO3 heterojunction thin films for photoelectrochemical water splitting and photodetector applications. Mater Lett. 2022;322:132450. https://doi.org/10.1016/j.matlet.2022.132450.

    Article  CAS  Google Scholar 

  23. Baruah S, Dutta J. Zinc stannate nanostructures: hydrothermal synthesis. Sci Technol Adv Mater. 2011;12(1):013004. https://doi.org/10.1088/1468-6996/12/1/013004.

    Article  Google Scholar 

  24. Xu JY, Zhang C. Oxygen vacancy engineering on cerium oxide nanowires for room-temperature linalool detection in rice aging. J Adv Ceram. 2022;11(10):1559. https://doi.org/10.1007/s40145-022-0629-8.

    Article  CAS  Google Scholar 

  25. Liang HP, Guo LP, Cao NJ, Hu HY, Li H, de Rooij NF, Umar A, Algarni H, Wang Y, Zhou GF. Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification. J Mater Chem A. 2021;9(42):23955. https://doi.org/10.1039/d1ta06346d.

    Article  CAS  Google Scholar 

  26. Wang ZY, Sackmann A, Gao S, Weimar U, Lu GY, Liu S, Zhang T, Barsan N. Study on highly selective sensing behavior of ppb-level oxidizing gas sensors based on Zn2SnO4 nanoparticles immobilized on reduced graphene oxide under humidity conditions. Sens Actuator B Chem. 2019;285:590. https://doi.org/10.1016/j.snb.2019.01.109.

    Article  CAS  Google Scholar 

  27. Yu SW, Jia XH, Yang J, Wang SZ, Li Y, Song HJ. Highly sensitive ethanol gas sensor based on CuO/ZnSnO3 heterojunction composites. Mater Lett. 2021;291:129531. https://doi.org/10.1016/j.matlet.2021.129531.

    Article  CAS  Google Scholar 

  28. Li Y, Lu YL, Wu KD, Zhang DZ, Debliquy M, Zhang C. Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. Rare Met. 2021;40(6):1477. https://doi.org/10.1007/s12598-020-01557-4.

    Article  CAS  Google Scholar 

  29. Li ZS, Liu XH, Zhou M, Zhang SL, Cao SZ, Lei GL, Lou CM, Zhang J. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J Hazard Mater. 2021;415:125757. https://doi.org/10.1016/j.jhazmat.2021.125757.

    Article  CAS  Google Scholar 

  30. Liu JJ, Zhang LY, Cheng B, Fan JJ, Yu JG. A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions. J Hazard Mater. 2021;413:125352. https://doi.org/10.1016/j.jhazmat.2021.125352.

    Article  CAS  Google Scholar 

  31. Gai LY, Lai RP, Dong XH, Wu X, Luan QT, Wang J, Lin HF, Ding WH, Wu GL, Xie WF. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022;41(6):1818. https://doi.org/10.1007/s12598-021-01937-4.

    Article  CAS  Google Scholar 

  32. Lei GL, Pan HY, Mei HS, Liu XH, Lu GC, Lou CM, Li ZS, Zhang J. Emerging single atom catalysts in gas sensors. Chem Soc Rev. 2022;51(16):7260. https://doi.org/10.1039/d2cs00257d.

    Article  CAS  Google Scholar 

  33. Xu YS, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Interfaces. 2020;12(18):20704. https://doi.org/10.1021/acsami.0c04398.

    Article  CAS  Google Scholar 

  34. Shruthi J, Jayababu N, Ghosal P, Reddy MVR. Ultrasensitive sensor based on Y2O3-In2O3 nanocomposites for the detection of methanol at room temperature. Ceram Int. 2019;45(17):21497. https://doi.org/10.1016/j.ceramint.2019.07.141.

    Article  CAS  Google Scholar 

  35. Yuan ZY, Yang F, Zhu HM, Meng FL, Ibrahim M. High-response n-butanol gas sensor based on ZnO/In2O3 heterostructure. Rare Met. 2023;42(1):198. https://doi.org/10.1007/s12598-022-02162-3.

    Article  CAS  Google Scholar 

  36. Yan M, Wu Y, Hua ZQ, Lu N, Sun WT, Zhang JB, Fan S. Humidity compensation based on power-law response for MOS sensors to VOCs. Sens Actuator B Chem. 2021;334:129601. https://doi.org/10.1016/j.snb.2021.129601.

    Article  CAS  Google Scholar 

  37. Jiang LL, Chen ZY, Cui Q, Xu S, Tang FL. Experimental and DFT-D3 study of sensitivity and sensing mechanism of ZnSnO3 nanosheets to C3H6O gas. J Mater Sci. 2022;57(5):3231. https://doi.org/10.1007/s10853-021-06855-5.

    Article  CAS  Google Scholar 

  38. Yang ZJ, Zou HS, Zhang YY, Liu FM, Wang J, Lv SY, Jiang L, Wang CG, Yan X, Sun P, Zhang LJ, Duan Y, Lu GY. The introduction of defects in Ti3C2Tx and Ti3C2Tx-assisted reduction of graphene oxide for highly selective detection of ppb-level NO2. Adv Funct Mater. 2022;32(15):2108959. https://doi.org/10.1002/adfm.202108959.

    Article  CAS  Google Scholar 

  39. Dong SY, Xia LJ, Chen XY, Cui LF, Zhu W, Lu ZS, Sun JH, Fan MH. Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Compos Part B: Eng. 2021;215:108765. https://doi.org/10.1016/j.compositesb.2021.108765.

    Article  CAS  Google Scholar 

  40. Kabitakis V, Gagaoudakis E, Moschogiannaki M, Kiriakidis G, Seitkhan A, Firdaus Y, Faber H, Yengel E, Loganathan K, Deligeorgis G, Tsetseris L, Anthopoulos TD, Binas V. A low-power CuSCN hydrogen sensor operating reversibly at room temperature. Adv Funct Mater. 2022;32:2102635. https://doi.org/10.1016/j.compositesb.2021.108765.

    Article  CAS  Google Scholar 

  41. van den Broek J, Abegg S, Pratsinis SE, Guntner AT. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat Commun. 2019;10:4220. https://doi.org/10.1038/s41467-019-12223-4.

    Article  CAS  Google Scholar 

  42. Yao MS, Li WH, Xu G. Metal-organic frameworks and their derivatives for electrically-transduced gas sensors. Coordin Chem Rev. 2021;426:213479. https://doi.org/10.1016/j.ccr.2020.213479.

    Article  CAS  Google Scholar 

  43. Chen WY, Jiang XF, Lai SN, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11(1):1302. https://doi.org/10.1038/s41467-020-15092-4.

    Article  CAS  Google Scholar 

  44. Zhao X, Li Q, Xu L, Zhang Z, Kang Z, Liao Q, Zhang Y. Interface engineering in 1D ZnO-based heterostructures for photoelectrical devices. Adv Funct Mater. 2022;32(11):2106887. https://doi.org/10.1002/adfm.202106887.

    Article  CAS  Google Scholar 

  45. Veeralingam S, Badhulika S. Enhanced carrier separation assisted high-performance piezo-phototronic self-powered photodetector based on core-shell ZnSnO3@In2O3 heterojunction. Nano Energy. 2022;98:107354. https://doi.org/10.1016/j.nanoen.2022.107354.

    Article  CAS  Google Scholar 

  46. Zhang DZ, Yang ZM, Yu SJ, Mi Q, Pan QN. Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coord Chem Rev. 2020;413:213272. https://doi.org/10.1016/j.ccr.2020.213272.

    Article  CAS  Google Scholar 

  47. Pan QN, Yang ZM, Wang WW, Zhang DZ. Sulfur dioxide gas sensing at room temperature based on tin selenium/tin dioxide hybrid prepared via hydrothermal and surface oxidation treatment. Rare Met. 2021;40(6):1588. https://doi.org/10.1007/s12598-020-01575-2.

    Article  CAS  Google Scholar 

  48. Meng JP, Li Z. Schottky-contacted nanowire sensors. Adv Mater. 2020;32(28):2000130. https://doi.org/10.1002/adma.202000130.

    Article  CAS  Google Scholar 

  49. Xu JY, Liao HL, Zhang C. ZnSnO3 based gas sensors for pyridine volatile marker detection in rice aging during storage. Food Chem. 2023;408:135204. https://doi.org/10.1016/j.foodchem.2022.135204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Outstanding Youth of Jiangsu Province of China (No. BK20211548), the China Scholarship Council (No. 202108320264) and the Excellent Doctoral Dissertation Fund of Yangzhou University (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8481 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, JY., Xu, KC., He, XX. et al. Interface engineering of ZnSnO3-based heterojunctions for room-temperature methanol monitoring. Rare Met. 42, 4153–4166 (2023). https://doi.org/10.1007/s12598-023-02344-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02344-7

Keywords

Navigation