Skip to main content

Advertisement

Log in

Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cubic garnet Li6.24La3Zr2Al0.24O11.98 (LLZO) is a candidate material for use as an electrolyte in Li–Air and Li–S batteries. The use of LLZO in practical devices will require LLZO to have good mechanical integrity in terms of scratch resistance (hardness) and an adequate stiffness (elastic modulus). In this paper, the powders were fabricated by powder processing of cast ingots. All specimens were then densified via hot pressing. The room temperature elastic moduli (Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio) and hardness were measured by resonant ultrasound spectroscopy, and Vickers indentation, respectively. For volume fraction porosity, P, the Young’s modulus was 149.8 ± 0.4 GPa (P = 0.03) and 132.6 ± 0.2 GPa (P = 0.06). The mean Vickers hardness was 6.3 ± 0.3 GPa for P = 0.03 and 5.2 ± 0.4 for P = 0.06.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2011) J Power Sources 196:6688

    Article  CAS  Google Scholar 

  2. Kowalczk I, Read J, Salomon M (2007) Pure Appl Chem 79:851

    Article  CAS  Google Scholar 

  3. Visco SJ, Katz BD, Nimon YS, De Jonghe LC (2007) US Patent 7,282,295 B2

  4. Wolfenstine J, Allen JL, Sumner J, Sakamoto J (2009) Solid State Ion 180:961

    Article  CAS  Google Scholar 

  5. Reddy JN (2006) An introduction to the finite element method, 3rd edn. McGraw-Hill Higher Education, New York

    Google Scholar 

  6. Shimonishi Y, Toda A, Zhang T, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) Solid State Ion 183:48

    Article  CAS  Google Scholar 

  7. Kotobuki M, Munakata H, Kanamura K, Sato Y, Yoshida T (2010) J Electrochem Soc 157:A1076

    Article  CAS  Google Scholar 

  8. Kokal I, Somer M, Notten PHL, Hintzen HT (2011) Solid State Ion 185:42

    Article  CAS  Google Scholar 

  9. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Inorganic Chem 50:1089

    Article  CAS  Google Scholar 

  10. Murugan R, Thangadurai V, Weppner W (2007) Angew Chem Int Ed 46:7778

    Article  CAS  Google Scholar 

  11. Rangasamy E, Wolfenstine J, Sakamoto JS (2011) Solid State Ion 206:28

    Article  Google Scholar 

  12. Rietveld HM (1969) J Appl Crystallogr 2:65

    Article  CAS  Google Scholar 

  13. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  14. Ren F, Case ED, Morrison A, Tafesse M, Baumann MJ (2009) Philos Mag 89:1163

    Article  CAS  Google Scholar 

  15. Ni JE, Case ED, Khabir KN, Stewart RC, Wu C-I, Hogan TP, Timm EJ, Girard SN, Kanatzidis MG (2010) Mater Sci Eng B 170:58

    Article  CAS  Google Scholar 

  16. Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C, Lara-Curzio E, Trejo RM (2008) Acta Mater 56:5954

    Article  CAS  Google Scholar 

  17. Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin C-H, Kanatzidis MG (2009) Philos Mag 89(2):143

    Article  CAS  Google Scholar 

  18. Vdovychenko OV, Voropaev VS, Slipenyuk AN (2006) J Mater Sci 41:8329. doi:10.1007/s10853-006-1019-2

    Article  CAS  Google Scholar 

  19. Ni JE, Ren F, Case ED, Timm EJ (2009) Mater Chem Phys 118:459

    Article  CAS  Google Scholar 

  20. Davulis PM, Shyam A, Lara-Curzio E, Pereira da Cunha M (2008) IEEE Int Ultrason Symp Proc 1–4:2150

    Google Scholar 

  21. Drymiotis FR (2010) Int J Mod Phys B 24:1047

    Article  Google Scholar 

  22. Lein HL, Andersen ØS, Vullum PE, Lara-Curzio E, Holmestad R, Einarsrud M-A, Grande T (2006) J Solid State Electrochem 10:635

    Article  CAS  Google Scholar 

  23. Pestka KA, Scott ES, Le Page Y (2011) AIP Adv 1:032154

    Article  Google Scholar 

  24. Pestka KA, Maynard JD, Soukiassian A, Xi XX, Schlom DG, Le Page Y, Bernhagen M, Reiche P, Uecker R (2008) Appl Phys Lett 92:111915

    Article  Google Scholar 

  25. Pham HH, Williams ME, Mahaffey P, Radovic M, Arroyave R, Cagin T (2011) Phys Rev B 84:064101

    Article  Google Scholar 

  26. Radovic M, Lara-Curzio E (2004) J Am Ceram Soc 87:2242

    Article  CAS  Google Scholar 

  27. Radovic M, Barsoum MW, Ganguly A, Zhen T, Finkel P, Kalidindi SR, Lara-Curzio E (2006) Acta Mater 54:2757

    Article  CAS  Google Scholar 

  28. Salvador JR, Yang J, Shi X, Wang H, Wereszczak AA, Kong H, Uher C (2009) Philos Mag 89:1517

    Article  CAS  Google Scholar 

  29. Flynn K, Radovic M (2011) J Mater Sci 46:2548. doi:10.1007/s10853-010-5107-y

    Article  CAS  Google Scholar 

  30. Gudlur P, Forness A, Lentz J, Radovic M, Muliana A (2012) Mater Sci Eng A 531:18

    Article  CAS  Google Scholar 

  31. Barsoum MW, Radovic M, Zhen T, Finkel P, Kalidindi SR (2005) Phys Rev Lett 94:085501

    Article  CAS  Google Scholar 

  32. McClellan KJ, Chu F, Roper JM, Shindo I (2001) J Mater Sci 36:3403. doi:10.1023/A:1017947625784

    Article  CAS  Google Scholar 

  33. Fullman RL (1953) Trans AIME 197:447

    CAS  Google Scholar 

  34. Houston B, Strakna RE, Belson HS (1968) J Appl Phys 39:3913

    Article  CAS  Google Scholar 

  35. Einspruch NG, Manning RJ (1963) J Acoust Soc Am 35:215

    Article  CAS  Google Scholar 

  36. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. The MIT Press, Cambridge

    Google Scholar 

  37. Chou HM, Case ED (1988) J Mater Sci Lett 7:1217

    Article  CAS  Google Scholar 

  38. Sharma PU, Modi KB (2010) Phys Scr 81:015601

    Article  Google Scholar 

  39. Dey A, Mukhopadhyay AK (2011) Int J Appl Ceram Technol 8:572

    Article  CAS  Google Scholar 

  40. Rice RW (1998) Porosity of ceramics. Marcel Dekker Inc., New York

    Google Scholar 

  41. Hoepfner TP, Case ED (2003) Ceram Int 29:699

    Article  CAS  Google Scholar 

  42. Gilman JJ (1969) Micromechanics of flow in solids. McGraw Hill, New York

    Google Scholar 

  43. Gilman JJ (2009) Chemistry and physics of mechanical hardness. Wiley, Hoboken

    Book  Google Scholar 

  44. Wooster WA (1953) Rep Prog Phys 16:62

    Article  Google Scholar 

  45. Gilman JJ (1963) Natl Bureau Stand Monogr 59: 79

    Google Scholar 

  46. Ruffa AR (1963) Phys Rev 130:1412

    Article  CAS  Google Scholar 

  47. Sirdeshmukh DB, Subhadra KG, Rag KK, Rao TT (1995) Cryst Res Technol 30:861

    Article  CAS  Google Scholar 

  48. Winkler HGF (1955) Struktur und Eigenshaften der Kristalle. Springer Vaerlag, Berlin

    Book  Google Scholar 

  49. Liu M, Shi B, Guo J, Cai X, Song H (2003) Scr Mater 49:167

    Article  CAS  Google Scholar 

  50. Vijh AK (1975) J Mater Sci 10:1087. doi:10.1007/BF00823227

    Article  CAS  Google Scholar 

  51. Ravinder D, Vijaya Kumar K, Boyanov BS (1999) Mater Lett 38:22

    Article  CAS  Google Scholar 

  52. Makishima A, Mackenzie JD (1973) J Non-Cryst Solids 12:35

    Article  CAS  Google Scholar 

  53. Graham LJ, Change R (1970) J Appl Phys 41:2247

    Article  CAS  Google Scholar 

  54. Bateman TB (1966) J Appl Phys 37:2194

    Article  CAS  Google Scholar 

  55. Clark AE, Strakna RE (1961) J Appl Phys 32:1172

    Article  CAS  Google Scholar 

  56. Mezeix L, Green DJ (2006) Int J Appl Ceram Technol 3:166

    Article  CAS  Google Scholar 

  57. Saunders GA, Parker SC, Benbattouche N, Alberts HI (1992) Phys Rev B 46:8756

    Article  CAS  Google Scholar 

  58. Gilman JJ (1973) In: Westbrook JH, Conrad H (eds) The science of hardness testing and it’s research applications. American Society for Metals, Metals Park, p 51

    Google Scholar 

  59. Rice RW (2000) Mechanical properties of ceramics and composites. Marcel Dekker Inc., New York

    Book  Google Scholar 

  60. Boccaccini AR (1994) J Am Ceram Soc 77:2779

    Article  CAS  Google Scholar 

  61. Verma RK (1960) J Geophys Res 65:757

    Article  CAS  Google Scholar 

  62. Soga N (1967) J Geophys Res 72:4227

    Article  CAS  Google Scholar 

  63. Birke P, Salam F, Doring S, Weppner W (1998) Solid State Ion 91:149

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of the U.S. Army Research Office (ARO) and the Army Research Laboratory (ARL) under grant W911NF-10-2-0089-P00001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J.E., Case, E.D., Sakamoto, J.S. et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci 47, 7978–7985 (2012). https://doi.org/10.1007/s10853-012-6687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6687-5

Keywords

Navigation