Skip to main content
Log in

Recovery of platinum from spent automotive catalyst based on hydrometallurgy

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Platinum (Pt) is a critical raw material for automotive catalytic converters due to its high-temperature stability, corrosion resistance and catalytic activity, whereas its limited primary resources and uneven distribution make it hard to meet the growing demand of platinum. Spent automotive catalyst (SAC) is currently the most important secondary resource of platinum, of which the platinum content is much higher than that of the primary platinum resources. The recovery process of platinum from spent automobile catalyst mainly consists of pretreatment followed by enrichment and refining, involving pyro- and hydrometallurgical techniques, among which enrichment and refining processes are extremely important for platinum recovery from spent automobile catalyst. This paper provides an overview of the technologies for platinum recovery from spent automotive catalyst. The emphasis is placed on the processes of enrichment and refining based on hydrometallurgical techniques. Future directions of research and development of platinum recovery from spent automobile catalyst are also proposed.

Graphical Abstract

摘要

金属铂具有优异的物化性能,是目前汽车催化转化器的关键原材料。含铂矿产资源储量少、分布不均且成分复杂,难以满足其日益增长的需求。废汽车催化剂作为主要的含铂二次资源,产生量大、铂含量高,其高效回收可有效缓解铂的供需压力。从废汽车催化剂中回收铂,主要包括预处理、富集和精炼三大工序,涉及火法和湿法冶金处理工艺。本文基于湿法冶金,对从废汽车催化剂中回收铂的富集和精炼工艺技术进行综述,并进一步提出从废汽车尾气催化剂中回收铂的发展建议。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cowley A. Platinum 2013 interim review. Johns Matthey. 2013: 1. https://doi.org/10.1016/S1351-4180(13)70483-5

  2. Jha MK, Lee JC, Kim MS, Jeong J, Kim BS, Kumar V. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometall. 2013;133:23. https://doi.org/10.1016/j.hydromet.2012.11.012.

    Article  CAS  Google Scholar 

  3. Qin YC, Wang FQ, Wang XM, Wang MW, Zhang WL, An WK, Wang XP, Ren YL, Zheng X, Lv DC, Ahmad A. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 2021;40(9):2354. https://doi.org/10.1007/s12598-021-01727-y.

    Article  CAS  Google Scholar 

  4. Omrani M, Goriaux M, Liu Y, Martinet S, Jean-Soro L, Ruban V. Platinum group elements study in automobile catalysts and exhaust gas samples. Environ Pollut. 2020;257:113477. https://doi.org/10.1016/j.envpol.2019.113477.

    Article  CAS  Google Scholar 

  5. Chen Y, Qiao QY, Cao JZ, Li HX, Bian ZF. Precious metal recovery. Joule. 2021;5(12):3097. https://doi.org/10.1016/j.joule.2021.11.002.

    Article  CAS  Google Scholar 

  6. Cowley A. PGM market report: May 2022. Johnson Matthey. 2022.

  7. Reith F, Campbell SG, Ball AS, Pring A, Southam G. Platinum in earth surface environments. Earth-Sci Rev. 2014;131:1. https://doi.org/10.1016/j.earscirev.2014.01.003.

    Article  CAS  Google Scholar 

  8. Cabri LJ, Oberthür T, Keays RR. Origin and depositional history of platinum-group minerals in placers-a critical review of facts and fiction. Ore Geol Rev. 2022;144: 104733. https://doi.org/10.1016/j.oregeorev.2022.104733.

    Article  Google Scholar 

  9. Karim S, Ting YP. Recycling pathways for platinum group metals from spent automotive catalyst: a review on conventional approaches and bio-processes. Resour Conserv Recycl. 2021;170:105588. https://doi.org/10.1016/j.resconrec.2021.105588.

    Article  CAS  Google Scholar 

  10. Bahaloo-Horeh N, Mousavi SM. Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. J Hazard Mater. 2020;400: 123186. https://doi.org/10.1016/j.jhazmat.2020.123186.

    Article  CAS  Google Scholar 

  11. Lucena P, Vadillo JM, Laserna JJ. Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-Induced breakdown spectrometry. Anal Chem. 1999;71(19):4385. https://doi.org/10.1021/ac9902998.

    Article  CAS  Google Scholar 

  12. Li GF, Wang QY, Zhao B, Shen MQ, Zhou RX. Effect of iron doping into CeO2-ZrO2 on the properties and catalytic behaviour of Pd-only three-way catalyst for automotive emission control. J Hazard Mater. 2011;186(1):911. https://doi.org/10.1016/j.jhazmat.2010.11.080.

    Article  CAS  Google Scholar 

  13. Shan WP, Liu FD, Yu YB, He H. The use of ceria for the selective catalytic reduction of NOx with NH3. Chin J Catal. 2014;35(8):1251. https://doi.org/10.1016/S1872-2067(14)60155-8.

    Article  CAS  Google Scholar 

  14. Cui MS, Zhang YQ, Zhong Q, Long ZQ, Zhao N, Huang XW. Portable XRF analysis of noble metal contents for automotive catalysts. Chin J Rare Met. 2020;44(11):1227. https://doi.org/10.13373/j.cnki.cjrm.XY180900111.

    Article  Google Scholar 

  15. Nevalainen P, Kinnunen NM, Kirveslahti A, Kallinen K, Maunula T, Keenan M, Suvanto M. Formation of NH3 and N2O in a modern natural gas three-way catalyst designed for heavy-duty vehicles: the effects of simulated exhaust gas composition and ageing. Appl Catal A. 2018;552:30. https://doi.org/10.1016/j.apcata.2017.12.017.

    Article  CAS  Google Scholar 

  16. Hickey N, Boscarato I, Kaspar J. Current Environmental Issues and Challenges. In: Cao G, Orrù R, editors. Dordrecht: Springer; 2014. 15. https://doi.org/10.1007/978-94-017-8777-2.

  17. Morikawa A, Okumura K, Ishii M, Kikuta K, Suda A, Shinjo H. Characterization of termetallic Pt-Ir-Au catalysts for NO decomposition. Rare Met. 2011;30(1):53. https://doi.org/10.1007/s12598-011-0196-6.

    Article  CAS  Google Scholar 

  18. Faisal M, Atsuta Y, Daimon H, Fujie K. Recovery of precious metals from spent automobile catalytic converters using supercritical carbon dioxide. Asia-Pac J Chem Eng. 2008;3(4):364. https://doi.org/10.1002/apj.156.

    Article  CAS  Google Scholar 

  19. Zheng HD, Ding YJ, Wen Q, Liu B, Zhang SG. Separation and purification of platinum group metals from aqueous solution: Recent developments and industrial applications. Resour Conserv Recycl. 2021;167:105417. https://doi.org/10.1016/j.resconrec.2021.105417.

    Article  CAS  Google Scholar 

  20. Rzelewska-Piekut M, Paukszta D, Regel-Rosocka R. Hydrometallurgical recovery of platinum group metals from spent automotive converters. Physicochem Probl Min Process. 2021;57(2):83. https://doi.org/10.37190/ppmp/132779.

    Article  CAS  Google Scholar 

  21. Dong HG, Zhao JC, Chen JL, Wu YD, Li BJ. Recovery of platinum group metals from spent catalysts: a review. Int J Min Process. 2015;145:108. https://doi.org/10.1016/j.minpro.2015.06.009.

    Article  CAS  Google Scholar 

  22. Liu C, Sun SC, Zhu XP, Tu GF. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: a mini review. Waste Manage Res. 2021;39(1):43. https://doi.org/10.1177/0734242X20969795.

    Article  Google Scholar 

  23. Granados-Fernández R, Montiel MA, Díaz-Abad S, Rodrigo MA, Lobato J. Platinum recovery techniques for a circular economy. Catal. 2021;11(8):937. https://doi.org/10.3390/catal11080937.

    Article  CAS  Google Scholar 

  24. Kim CH, Woo SI, Jeon SH. Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination. Ind Eng Chem Res. 2000;39(5):1185. https://doi.org/10.1021/ie9905355.

    Article  CAS  Google Scholar 

  25. Yakoumis I, Panou M, Moschovi AM, Panias D. Recovery of platinum group metals from spent automotive catalysts: a review. Clea Eng Technol. 2021;3: 100112. https://doi.org/10.1016/j.clet.2021.100112.

    Article  Google Scholar 

  26. Kolliopoulos G, Balomenos E, Giannopoulou I, Yakoumis I, Panias D. Behavior of platinum group during their pyrometallurgical recovery from spent automotive catalysts. Open Access Librar J. 2014;1(5):1. https://doi.org/10.4236/oalib.1100736.

    Article  Google Scholar 

  27. Ding YJ, Zheng HD, Zhang SG, Liu B, Wu BY, Jian ZM. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl. 2020;155:104644. https://doi.org/10.1016/j.resconrec.2019.104644.

    Article  Google Scholar 

  28. Compernolle S, Wambeke D, De Raedt I, Kimpe K, Vanhaecke F. Direct determination of Pd, Pt and Rh in fire assay lead buttons by laser ablation-ICP-OES: automotive exhaust catalysts as an example. J Anal At Spectrom. 2011;26(8):1679. https://doi.org/10.1039/C1JA10079C.

    Article  CAS  Google Scholar 

  29. Morcali MH. A new approach to recover platinum-group metals from spent catalytic converters via iron matte. Resour Conserv Recycl. 2020;159:104891. https://doi.org/10.1016/j.resconrec.2020.104891.

    Article  Google Scholar 

  30. Zhang FY, Zhang GA, Xu L, Zhao Z. Enrichment of Pd, Pt and Rh from spent automotive catalyst by pyrometallurgical bismuth capture. Chin J Nonferrous Metals. 2020;30(9):2162. https://doi.org/10.11817/j.ysxb.1004.0609.2020-36475.

    Article  Google Scholar 

  31. Peng ZW, Li ZZ, Lin XL, Tang HM, Ye L, Ma YT, Rao MJ, Zhang YB, Li GH, Jiang T. Pyrometallurgical recovery of platinum group metals from spent catalysts. JOM. 2017;69(9):1553. https://doi.org/10.1007/s11837-017-2450-3.

    Article  CAS  Google Scholar 

  32. Trinh HB, Lee JC, Suh YJ, Lee J. A review on the recycling processes of spent auto-catalysts: towards the development of sustainable metallurgy. Waste Manage. 2020;114:148. https://doi.org/10.1016/j.wasman.2020.06.030.

    Article  CAS  Google Scholar 

  33. Ding L, Yang JG, Yan WP, Li SC, Nan TX, Li LC. Enrichment of platinum group metals from cordierite-type automotive exhaust catalyst. Hydrometall Chin. 2018;37(5):376. https://doi.org/10.13355/j.cnki.sfyj.2018.05.008.

    Article  Google Scholar 

  34. Trinh HB, Lee J, Srivastava RR, Kim S. Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route. J Hazard Mater. 2019;379: 120772. https://doi.org/10.1016/j.jhazmat.2019.120772.

    Article  CAS  Google Scholar 

  35. Kim MS, Park SW, Lee JC, Choubey PK. A novel zero emission concept for electrogenerated chlorine leaching and its application to extraction of platinum group metals from spent automotive catalyst. Hydrometall. 2016;159:19. https://doi.org/10.1016/j.hydromet.2015.10.030.

    Article  CAS  Google Scholar 

  36. Kim MS, Lee JC, Park SW, Jeong J, Kumar V. Dissolution behaviour of platinum by electro-generated chlorine in hydrochloric acid solution. J Chem Technol Biotechnol. 2013;88(7):1212. https://doi.org/10.1002/jctb.3957.

    Article  CAS  Google Scholar 

  37. Upadhyay AK, Lee JC, Kim EY, Kim MS, Kim BS, Kumar V. Leaching of platinum group metals (PGMs) from spent automotive catalyst using electro-generated chlorine in HCl solution. J Chem Technol Biotechnol. 2013;88(11):1991. https://doi.org/10.1002/jctb.4057.

    Article  CAS  Google Scholar 

  38. Kizilaslan E, Aktaş S, Şeşen MK. Towards environmentally safe recovery of platinum from scrap automotive catalytic converters. Turk J Eng Env Sci. 2009;33(2):83. https://doi.org/10.3906/muh-0901-10.

    Article  CAS  Google Scholar 

  39. De Aberasturi DJ, Pinedo R, De Larramendi IR, De Larramendi JIR, Rojo T. Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Min Eng. 2011;24(6):505. https://doi.org/10.1016/j.mineng.2010.12.009.

    Article  CAS  Google Scholar 

  40. Yakoumis I, Moschovi A, Panou M, Panias D. Single-step hydrometallurgical method for the platinum group metals leaching from commercial spent automotive catalysts. J Sustain Metall. 2020;6(2):259. https://doi.org/10.1007/s40831-020-00272-9.

    Article  Google Scholar 

  41. Ding YJ, Zhang SG, Liu B, Zheng HD, Chang CC, Ekberg C. Recovery of precious metals from electronic waste and spent catalysts: a review. Resour Conserv Recy. 2019;141:284. https://doi.org/10.1016/j.resconrec.2018.10.041.

    Article  Google Scholar 

  42. Wang JX, Faraji F, Ramsay J, Ghahreman A. A review of biocyanidation as a sustainable route for gold recovery from primary and secondary low-grade resources. J Clean Prod. 2021;296:126457. https://doi.org/10.1016/j.jclepro.2021.126457.

    Article  CAS  Google Scholar 

  43. Sun SQ, Jin CX, He WZ, Li GM, Zhu HC, Huang JW. A review on management of waste three-way catalysts and strategies for recovery of platinum group metals from them. J Environ Manage. 2022;305:114383. https://doi.org/10.1016/j.jenvman.2021.114383.

    Article  CAS  Google Scholar 

  44. Atkinson GB, Kuczynski RJ, Desmond DP. Cyanide leaching method for recovering platinum group metals from a catalytic converter catalyst. US. Patent; US5160711A. 1992.

  45. Shams K, Beiggy MR, Shirazi AG. Platinum recovery from a spent industrial dehydrogenation catalyst using cyanide leaching followed by ion exchange. Appl Catal A. 2004;258(2):227. https://doi.org/10.1016/j.apcata.2003.09.003.

    Article  CAS  Google Scholar 

  46. Chen J, Huang K. A new technique for extraction of platinum group metals by pressure cyanidation. Hydrometall. 2006;82(3–4):164. https://doi.org/10.1016/j.hydromet.2006.03.041.

    Article  CAS  Google Scholar 

  47. Naghavi Z, Ghoreishi SM, Rahimi A, Hadadzadeh H. Kinetic study for platinum extraction from spent catalyst in cyanide solution at high temperatures. Int J Chem React Eng. 2016;14(1):143. https://doi.org/10.1515/ijcre-2015-0046.

    Article  CAS  Google Scholar 

  48. Karim S, Ting YP. Ultrasound-assisted nitric acid pretreatment for enhanced biorecovery of platinum group metals from spent automotive catalyst. J Clean Prod. 2020;255:120199. https://doi.org/10.1016/j.jclepro.2020.120199.

    Article  CAS  Google Scholar 

  49. Ilyas S, Kim H. Recovery of platinum-group metals from an unconventional source of catalytic converter using pressure cyanide leaching and ionic liquid extraction. JOM. 2022;74(3):1020. https://doi.org/10.1007/s11837-021-05119-6.

    Article  CAS  Google Scholar 

  50. Saguru C, Ndlovu S, Moropeng D. A review of recent studies into hydrometallurgical methods for recovering PGMs from used catalytic converters. Hydrometall. 2018;182:44. https://doi.org/10.1016/j.hydromet.2018.10.012.

    Article  CAS  Google Scholar 

  51. Donato DB, Nichols O, Possingham H, Moore M, Ricci PF, Noller BN. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ Int. 2007;33(7):974. https://doi.org/10.1016/j.envint.2007.04.007.

    Article  CAS  Google Scholar 

  52. Huang SW, Fei WL, Zhang MJ, Yao QC. A method for extraction and refining of platinum group metals from spent automobile catalyst. China Patent; CN201710780442.6. 2018.

  53. Hammadi MQ, Yassen RS, Abid KN. Recovery of platinum and palladium from scrap automotive catalytic converters. Al-Khwarizmi Eng J. 2017;13(3):131. https://doi.org/10.22153/kej.2017.04.002.

    Article  Google Scholar 

  54. Zhao JC, Wu YD, Tong WF, Yang HQ, Bao SM, Pei HY, Dong HG. Research progress on preparation of high purity platinum. Precious Met. 2020;41(1):92. https://doi.org/10.3969/j.issn.1004-0676.2020.01.015.

    Article  CAS  Google Scholar 

  55. Liu SJ. Metallurgy of platinum group metals. Changsha, Hunan: Central South University Press; 2013. 498.

    Google Scholar 

  56. Lee JC, Kurniawan Hong HJ, Chung KW, Kim S. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: a review. Sep Purif Technol. 2020;246:116896. https://doi.org/10.1016/j.seppur.2020.116896.

    Article  CAS  Google Scholar 

  57. Barbaro P, Liguori F. Ion exchange resins: catalyst recovery and recycle. Chem Rev. 2009;109(2):515. https://doi.org/10.1021/cr800404j.

    Article  CAS  Google Scholar 

  58. Nikoloski AN, Ang KL. Review of the application of ion exchange resins for the recovery of platinum-group metals from hydrochloric acid solutions. Min Process Extr Metall Rev. 2014;35(6):369. https://doi.org/10.1080/08827508.2013.764875.

    Article  CAS  Google Scholar 

  59. Luo Y, He X, Xiong XD, Chen F, Wu C, Chen Q, Li YT. Mechanism of removing impurities in high purity platinum using ion exchange. Precious Met. 2013;34(S1):1.

    Google Scholar 

  60. Bi XG, Yu JM, Yang JF, He HL, Li Q. Purification of platinum group metals solution by cation exchange. Min Metall Eng. 2015;35(3):87. https://doi.org/10.3969/j.issn.0253-6099.2015.03.024.

    Article  CAS  Google Scholar 

  61. Zhao DP, Yang RS, Zou AQ, Wang SX, Guo H, Yang XJ. Adsorption of low concentration platinum from chloride leaching solution with 201×7 ion-exchange resin. Precious Met. 2014;35(2):43. https://doi.org/10.3969/j.issn.1004-0676.2014.02.010.

    Article  CAS  Google Scholar 

  62. Shen SB, Guishen L, Pan TL, He JZ, Guo ZC. Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. J Colloid Interface Sci. 2011;364(2):482. https://doi.org/10.1016/j.jcis.2011.08.043.

    Article  CAS  Google Scholar 

  63. Kononova ON, Melnikov AM, Borisova TV, Krylov AS. Simultaneous ion exchange recovery of platinum and rhodium from chloride solutions. Hydrometall. 2011;105(3–4):341. https://doi.org/10.1016/j.hydromet.2010.11.009.

    Article  CAS  Google Scholar 

  64. Schoeman E, Bradshaw SM, Akdogan G, Snyders CA, Eksteen JJ. The extraction of platinum and palladium from a synthetic cyanide heap leach solution with strong base anion exchange resins. Int J Min Process. 2017;162:27. https://doi.org/10.1016/j.minpro.2017.02.017.

    Article  CAS  Google Scholar 

  65. Huang HL, Qu RJ, Sun CM, Zhang Y. Adsorption properties for Pt(IV) of a novel chelating resin polystyrene-supported glucosamine. Ion Exch Adsorpt. 2010;26(5):385.

    CAS  Google Scholar 

  66. Nikoloski AN, Ang KL, Li D. Recovery of platinum, palladium and rhodium from acidic chloride leach solution using ion exchange resins. Hydrometall. 2015;152:20. https://doi.org/10.1016/j.hydromet.2014.12.006.

    Article  CAS  Google Scholar 

  67. Dobrowolski R, Mróz A, Cejner M. The enrichment of Pt(IV) ions on Dowex-1X8 and Purolite S-920 ion exchangers from aqueous solutions and their determination using slurry sampling and direct solid sampling graphite furnace atomic absorption spectrometry techniques. Anal Methods. 2016;8(29):5818. https://doi.org/10.1039/c6ay00998k.

    Article  CAS  Google Scholar 

  68. Morcali MH, Zeytuncu B. Investigation of adsorption parameters for platinum and palladium onto a modified polyacrylonitrile-based sorbent. Int J Min Process. 2015;137:52. https://doi.org/10.1016/j.minpro.2015.02.011.

    Article  CAS  Google Scholar 

  69. Zhou LM, Xu JP, Liang XZ, Liu ZR. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J Hazard Mater. 2010;182(1–3):518. https://doi.org/10.1016/j.jhazmat.2010.06.062.

    Article  CAS  Google Scholar 

  70. Xu ZX, Zhao YL, Wang PY, Yan XQ, Cai MM, Yang Y. Extraction of Pt(IV), Pt(II), and Pd(II) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid. Ind Eng Chem Res. 2019;58(5):1779. https://doi.org/10.1021/acs.iecr.8b03408.

    Article  CAS  Google Scholar 

  71. Xiong CH, Zheng YQ, Feng YJ, Yao CP, Ma CA, Zheng XM, Jiang JX. Preparation of a novel chloromethylated polystyrene-2-amino-1,3,4-thiadiazole chelating resin and its adsorption properties and mechanism for separation and recovery of Pt(IV) from aqueous solutions. J Mater Chem A. 2014;2(15):5379. https://doi.org/10.1039/c3ta14923d.

    Article  CAS  Google Scholar 

  72. Izatt SR, Bruening RL, Izatt NE. Metal separations and recovery in the mining industry. JOM. 2012;64(11):1279. https://doi.org/10.1007/s11837-012-0452-8.

    Article  CAS  Google Scholar 

  73. Izatt RM, Izatt SR, Izatt NE, Krakowiak KE, Bruening RL, Navarro L. Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams. Green Chem. 2015;17(4):2236. https://doi.org/10.1039/c4gc02188f.

    Article  CAS  Google Scholar 

  74. Papaiconomou N, Svecova L, Bonnaud C, Cathelin L, Billard I, Chainet E. Possibilities and limitations in separating Pt(IV) from Pd(II) combining imidazolium and phosphonium ionic liquids. Dalton Trans. 2015;44(46):20131. https://doi.org/10.1039/C5DT03791C.

    Article  CAS  Google Scholar 

  75. Jaree A, Khunphakdee N. Separation of concentrated platinum(IV) and rhodium(III) in acidic chloride solution via liquid-liquid extraction using tri-octylamine. J Ind Eng Chem. 2011;17(2):243. https://doi.org/10.1016/j.jiec.2011.02.013.

    Article  CAS  Google Scholar 

  76. Swain B, Jeong J, Kim SK, Lee JC. Separation of platinum and palladium from chloride solution by solvent extraction using Alamine 300. Hydrometall. 2010;104(1):1. https://doi.org/10.1016/j.hydromet.2010.03.013.

    Article  CAS  Google Scholar 

  77. Lee JY, Kumar JR, Kim JS, Park HK, Yoon HS. Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions using tri-iso-octylamine. J Hazard Mater. 2009;168(1):424. https://doi.org/10.1016/j.jhazmat.2009.02.056.

    Article  CAS  Google Scholar 

  78. Baba Y, Arima A, Kanemaru S, Iwakuma M, Oshima T. Extraction equilibria of palladium(II) and platinum(IV) with N, N-di(2-ethylhexyl)aminomethylquinoline from hydrochloric acid. J Chem Eng Jpn. 2011;44(10):686. https://doi.org/10.1252/jcej.10we284.

    Article  CAS  Google Scholar 

  79. Maeda M, Narita H, Tokoro C, Tanaka M, Motokawa R, Shiwaku H, Yaita T. Selective extraction of Pt(IV) over Fe(III) from HCl with an amide-containing tertiary amine compound. Sep Purif Technol. 2017;177:176. https://doi.org/10.1016/j.seppur.2017.01.002.

    Article  CAS  Google Scholar 

  80. Liu WH, Wang Q, Zheng Y, Wang SB, Yan Y, Yang YZ. Extraction behaviour and mechanism of Pt(IV) and Pd(II) by liquid-liquid extraction with an ionic liquid [HBBIm]Br. Dalton Trans. 2017;46(22):7210. https://doi.org/10.1039/c7dt01142c.

    Article  CAS  Google Scholar 

  81. Wang N, Wang Q, Lu WJ, Ru MY, Yang YZ. Extraction and stripping of platinum (IV) from acidic chloride media using guanidinium ionic liquid. J Mol Liq. 2019;293: 111040. https://doi.org/10.1016/j.molliq.2019.111040.

    Article  CAS  Google Scholar 

  82. Zhao Z, Xiong YH, Cheng XK, Hou X, Yang YX, Tian YP, You JL, Xu L. Adsorptive removal of trace thallium(I) from wastewater: a review and new perspectives. J Hazard Mater. 2020;393: 122378. https://doi.org/10.1016/j.jhazmat.2020.122378.

    Article  CAS  Google Scholar 

  83. Yamada M, Rajiv Gandhi M, Kondo Y, Hamada F. Synthesis and characterisation of p-diethylaminomethylthiacalix[4]arene for selective recovery of platinum from automotive catalyst residue. Supramol Chem. 2014;26(7–8):620. https://doi.org/10.1080/10610278.2014.887202.

    Article  CAS  Google Scholar 

  84. Yamada M, Rajiv Gandhi M, Kaneta Y, Hu Y, Shibayama A. Calix[4]arene-based n-dialkylamino extractants for selective platinum group metal separation from automotive catalysts. Chem Select. 2017;2(3):1052. https://doi.org/10.1002/slct.201601981.

    Article  CAS  Google Scholar 

  85. Yamada M, Kaneta Y, Rajiv Gandhi M, Kunda UMR, Shibayama A. Calix[4]arene-based amino extractants containing n-alkyl moieties for separation of Pd(II) and Pt(IV) from leach liquors of automotive catalysts. Metals. 2018;8(7):517. https://doi.org/10.3390/met8070517.

    Article  CAS  Google Scholar 

  86. Yamada M, Kaneta Y, Rajiv Gandhi M, Kunda UMR, Shibayama A. Recovery of Pd(II) and Pt(IV) from leach liquors of automotive catalysts with calixarene-based di-n-alkylamino extractants in saturated hydrocarbon diluents. Hydrometall. 2019;184:103. https://doi.org/10.1016/j.hydromet.2019.01.002.

    Article  CAS  Google Scholar 

  87. Sulaiman RNR, Othman N, Jusoh N, Noah NFM, Rashid R, Saufi SM. Intensification reactive recovery of tetravalent platinum from spent catalyst via synergism of TBP/Cyanex 302 system. Chem Eng Process. 2021;168: 108581. https://doi.org/10.1016/j.cep.2021.108581.

    Article  CAS  Google Scholar 

  88. Gupta B, Singh I. Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their recovery from real samples. Hydrometall. 2013;134–135:11. https://doi.org/10.1016/j.hydromet.2013.01.001.

    Article  CAS  Google Scholar 

  89. Ilyas S, Kim H, Srivastava RR. Separation of platinum group metals from model chloride solution using phosphonium-based ionic liquid. Sep Purif Technol. 2022;278: 119577. https://doi.org/10.1016/j.seppur.2021.119577.

    Article  CAS  Google Scholar 

  90. Rzelewska-Piekut M, Regel-Rosocka M. Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids. Sep Purif Technol. 2019;212:791. https://doi.org/10.1016/j.seppur.2018.11.091.

    Article  CAS  Google Scholar 

  91. Liu RH, Geng YQ, Tian ZJ, Wang N, Wang M, Zhang GJ, Yang YZ. Extraction of platinum(IV) by hydrophobic deep eutectic solvents based on trioctylphosphine oxide. Hydrometall. 2021;199:105521. https://doi.org/10.1016/j.hydromet.2020.105521.

    Article  CAS  Google Scholar 

  92. Chen ZH. Study on behaviour and mechanism of extraction of platinum(IV) with unsymmetrical sulfoxide BSO. Rare Metal Meter Eng. 2009;38(6):1062. https://doi.org/10.3321/j.issn:1002-185X.2009.06.027.

    Article  CAS  Google Scholar 

  93. Chen ZH, Gu GB, Zuo H, Wu F. Study on extraction and separation of palladium and platinum with unsymmetrical sulfoxide BSO. Nonferrous Metals (Extr Metall). 2012;7:34. https://doi.org/10.3969/j.issn.1007-7545.2012.07.009.

    Article  CAS  Google Scholar 

  94. Pan L, Zhang ZD. Solvent extraction and separation of palladium(II) and platinum(IV) from hydrochloric acid medium with dibutyl sulfoxide. Min Eng. 2009;22(15):1271. https://doi.org/10.1016/j.mineng.2009.07.006.

    Article  CAS  Google Scholar 

  95. Gupta B, Singh I, Mahandra H. Extraction and separation studies on Pt(IV), Ir(III) and Rh(III) using sulphur containing extractant. Sep Purif Technol. 2014;132:102. https://doi.org/10.1016/j.seppur.2014.04.045.

    Article  CAS  Google Scholar 

  96. Zhang GJ, Zhang LX, Wang Q, Guo JX, Wei HY, Yang YZ. Extraction and separation of Pd(II)/Pt(IV) by neutral sulfur-containing extractant from hydrochloric acid medium. New J Chem. 2021;45(41):19467. https://doi.org/10.1039/d1nj03140f.

    Article  CAS  Google Scholar 

  97. He KB, Tang J, Weng HQ, Chen G, Wu ZH, Lin MZ. Efficient extraction of precious metal ions by a membrane emulsification circulation extractor. Sep Purif Technol. 2019;213:93. https://doi.org/10.1016/j.seppur.2018.12.024.

    Article  CAS  Google Scholar 

  98. Jha R, Rao MD, Meshram A, Verma HR, Singh KK. Potential of polymer inclusion membrane process for selective recovery of metal values from waste printed circuit boards: a review. J Clean Prod. 2020;265:121621. https://doi.org/10.1016/j.jclepro.2020.121621.

    Article  CAS  Google Scholar 

  99. Liu L, Liu SX, Zhang QP, Li C, Bao CL, Liu XT, Xiao PF. Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J Chem Eng Data. 2013;58(2):209. https://doi.org/10.1021/je300551c.

    Article  CAS  Google Scholar 

  100. Li K, Xu ZM. A review of current progress of supercritical fluid technologies for e-waste treatment. J Clean Prod. 2019;227:794. https://doi.org/10.1016/j.jclepro.2019.04.104.

    Article  CAS  Google Scholar 

  101. Wang SY, Vincent T, Roux J, Faur C, Guibal E. Pd(II) and Pt(IV) sorption using alginate and algal-based beads. Chem Eng J. 2017;313:567. https://doi.org/10.1016/j.cej.2016.12.039.

    Article  CAS  Google Scholar 

  102. Garole DJ, Choudhary BC, Paul D, Borse AU. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environ Sci Pollut Res. 2018;25(11):10911. https://doi.org/10.1007/s11356-018-1351-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Anhui Province (No. 2108085J26), the National Natural Science Foundation of China (Nos. 51904003 and U1703130), the Key Research and Development Plan of Anhui Province (No. 2022n07020004) and the Open Foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization (No. CNMRCUKF2208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Xu or Zhuo Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, T., He, JD., Xu, L. et al. Recovery of platinum from spent automotive catalyst based on hydrometallurgy. Rare Met. 42, 1118–1137 (2023). https://doi.org/10.1007/s12598-022-02236-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02236-2

Keywords

Navigation