Skip to main content

Advertisement

Log in

N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Designing a heterojunction photocatalyst to improve the separation efficiency of photogenerated electrons and holes is of great significance to improve the hydrogen production efficiency. In this work, we report a rational design to grow ZnIn2S4 on Mo-MOF-derived N-doped C-coated MoO2 (MOZIS), and it has excellent photocatalytic hydrogen production with triethanolamine (TEOA) as sacrificial agent. N-doped C improves the electron transport efficiency between MoO2 and ZnIn2S4. The systematic study shows that MOZIS has good properties to promote the effective separation and transfer of photocatalytic charges, which is attributed to the tight contact interface and good energy band structure between MoO2 and ZnIn2S4. The optimized nanocomposites have a high hydrogen production efficiency of 10.89 mmol·g−1 (4 h) under visible light. MOF-derived N-doped C-coated MoO2 is an effective strategy to improve the photocatalytic hydrogen production efficiency of ZnIn2S4.

Graphical abstract

摘要

设计异质结光催化剂以提高光生电子和空穴的分离效率对提高制氢效率具有重要意义。在这项工作中,我们报告了一种合理的设计,在Mo-MOF衍生的N掺杂C包覆的MoO2上生长ZnIn2S4 (MOZIS), 它以TEOA为牺牲剂具有优异的光催化产氢性能。N掺杂C提高了MoO2和ZnIn2S4之间的电子传输效率系统研究表明,MOZIS具有良好的促进光催化电荷有效分离和转移的性能,这归因于MoO2和ZnIn2S4之间紧密的接触界面和良好的能带结构。优化后的纳米复合材料在可见光下具有10.89 mmol g−1(4 h) 的高产氢效率。MOF衍生的N掺杂C包覆MoO2是提高ZnIn2S4光催化产氢效率的有效策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang GP, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM. Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angew Chem. 2020;131(21):8332. https://doi.org/10.1002/ange.202000503.

    Article  Google Scholar 

  2. Chen XB, Shen SH, Guo LJ, Mao SS. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010;110(11):6503. https://doi.org/10.1021/cr1001645.

    Article  CAS  Google Scholar 

  3. Zheng CY, Jiang GP, Li YQ, Jin ZL. NiO and Co1.29Ni1.71O4 derived from NiCo LDH form S-scheme heterojunction for efficient photocatalytic hydrogen evolution. J Alloys Compd. 2022;904:164041. https://doi.org/10.1016/j.jallcom.2022.164041.

    Article  CAS  Google Scholar 

  4. Liu JA, Liu Y, Liu NY, Han YZ, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science. 2015;347(6225):970. https://doi.org/10.1126/science.aaa3145.

    Article  CAS  Google Scholar 

  5. Liu SJ, Zhang C, Sun YD, Chen Q, He YF, Zhang K, Zhang J, Liu B, Chen LF. Design of metal-organic framework-based photocatalysts for hydrogen generation. Coord Chem Rev. 2020;413:213266. https://doi.org/10.1016/j.ccr.2020.213266.

    Article  CAS  Google Scholar 

  6. Sun LJ, Su HW, Liu QQ, Hu J, Wang LL, Tang H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022;41(7):2387. https://doi.org/10.1007/s12598-022-01966-7.

    Article  CAS  Google Scholar 

  7. Ning XM, Wu YL, Ma XF, Zhang Z, Gao RQ, Chen J, Shan DL, Lu XQ. A novel charge transfer channel to simultaneously enhance photocatalytic water splitting activity and stability of CdS. Adv Funct Mater. 2019;29(40):1902992. https://doi.org/10.1002/adfm.201902992.

    Article  CAS  Google Scholar 

  8. Wang HQ, Zhang WJ, Zhang XW, Hu SX, Zhang ZC, Zhou WJ, Liu H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021;14(12):4857. https://doi.org/10.1007/s12274-021-3445-5.

    Article  CAS  Google Scholar 

  9. Zheng GC, Pastoriza Santos I, Pérez Juste J, Liz Marzán LM. Plasmonic metal organic frameworks. SmartMat. 2021;2(4):446. https://doi.org/10.1002/smm2.1047.

    Article  CAS  Google Scholar 

  10. Yang JH, Yan HJ, Wang XL, Wen FY, Wang ZJ, Fan DY, Shi JY, Li C. Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J Catal. 2012;290:151. https://doi.org/10.1016/j.jcat.2012.03.008.

    Article  CAS  Google Scholar 

  11. Luo MH, Lu P, Yao WF, Huang CP, Xu QJ, Wu Q, Kuwahara Y, Yamashita H. Shape and composition effects on photocatalytic hydrogen production for Pt–Pd alloy cocatalysts. ACS Appl Mater Interfaces. 2016;8(32):20667. https://doi.org/10.1021/acsami.6b04388.

    Article  CAS  Google Scholar 

  12. Zhang JY, Wang YH, Zhang J, Lin Z, Huang F, Yu JG. Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers. ACS Appl Mater Interfaces. 2013;5(3):1031. https://doi.org/10.1021/am302726y.

    Article  CAS  Google Scholar 

  13. Huang WQ, Fu ZY, Hu XY, Wang Q, Fan J, Liu EZ. Efficient photocatalytic hydrogen evolution over Cu3Mo2O9/TiO2 p-n heterojunction. J Alloys Compd. 2022;904:1640889. https://doi.org/10.1016/j.jallcom.2022.164089.

    Article  CAS  Google Scholar 

  14. Geng LL, Zhou WF, Wang XL, Li TT, Nowak AP, Liu ZM, Zhang YZ, Zhang DS, Zhang XL, Han XH. Redox property switching in MOFs with open metal sites for improved catalytic hydrogenation performance. J Alloy Compd. 2021;888:161494. https://doi.org/10.1016/j.jallcom.2021.161494.

    Article  CAS  Google Scholar 

  15. Zuo GC, Wang YT, Teo WL, Xian QM, Zhao YL. Direct Z-scheme TiO2–ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl Catal B. 2021;281:120126. https://doi.org/10.1016/j.apcatb.2021.120126.

    Article  CAS  Google Scholar 

  16. Li H, Chen ZH, Zhao L, Yang GD. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Met. 2019;38(5):420. https://doi.org/10.1007/s12598-019-01253-y.

    Article  CAS  Google Scholar 

  17. Yang MQ, Xu YJ, Lu WH, Zeng KY, Zhu H, Xu QH, Ho GW. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat Commun. 2017;8(1):1. https://doi.org/10.1038/ncomms14224.

    Article  CAS  Google Scholar 

  18. Ran Q, Yu ZB, Jiang RH, Hou YP, Huang J, Zhu HX, Yang F, Li MJ, Li FY, Sun QQ. A novel, noble-metal-free core-shell structure Ni–P@C cocatalyst modified sulfur vacancy-rich ZnIn2S4 2D ultrathin sheets for visible light-driven photocatalytic hydrogen evolution. J Alloy Compd. 2021;855:157333. https://doi.org/10.1016/j.jallcom.2020.157333.

    Article  CAS  Google Scholar 

  19. Zhang GP, Wu H, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green Energy Environ. 2020;7:176. https://doi.org/10.1016/j.gee.2020.12.015.

    Article  CAS  Google Scholar 

  20. Jiao XC, Chen ZW, Li XD, Sun YF, Gao S, Yan WS, Wang CM, Zhang Q, Lin Y, Luo Y, Xie Y. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J Am Chem Soc. 2017;139(22):7586. https://doi.org/10.1021/jacs.7b02290.

    Article  CAS  Google Scholar 

  21. Wang SB, Wang Y, Zhang SL, Zang SQ, Lou XW. Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv Mater. 2019;39(41):1903404. https://doi.org/10.1002/adma.201903404.

    Article  CAS  Google Scholar 

  22. Low JX, Yu JG, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater. 2017;29(20):1601694. https://doi.org/10.1002/adma.201601694.

    Article  CAS  Google Scholar 

  23. Qiu B, Zhu QH, Du MM, Fan LG, Xing MY, Zhang JL. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew Chem. 2017;56(10):2684. https://doi.org/10.1002/anie.201612551.

    Article  CAS  Google Scholar 

  24. Zeng WX, Bian Y, Cao S, Ma YJ, Liu Y, Zhu AQ, Tan PF, Pan J. Phase transformation synthesis of strontium tantalum oxynitride-based heterojunction for improved visible light-driven hydrogen evolution. ACS Appl Mater Interfaces. 2018;10(25):21328. https://doi.org/10.1021/acsami.8b04837.

    Article  CAS  Google Scholar 

  25. He J, Chen L, Wang F, Liu Y, Chen P, Au CT, Yin SF. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution. Chemsuschem. 2016;9(6):624. https://doi.org/10.1002/cssc.201501544.

    Article  CAS  Google Scholar 

  26. Wan ST, Li HT, Ma ZH, Zhang HC, Zheng YZ. 2D/2D heterostructured MoS2/PtSe2 promoting charge separation in FTO thin film for efficient and stable photocatalytic hydrogen evolution. Rare Met. 2022;41(5):1735. https://doi.org/10.1007/s12598-021-01954-3.

    Article  CAS  Google Scholar 

  27. Liang HJ, Hua P, Zhou YF, Fu ZM, Tang JN, Niu JF. Fabrication of Cu/rGO/MoS2 nanohybrid with energetic visible-light response for degradation of rhodamine B. Chin Chem Lett. 2019;30(12):2245. https://doi.org/10.1016/j.cclet.2019.05.046.

    Article  CAS  Google Scholar 

  28. Lu TY, Li TF, Shi DS, Sun JL, Pang H, Xu L, Yang J, Tang YW. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat. 2021;2(4):591. https://doi.org/10.1002/smm2.1063.

    Article  CAS  Google Scholar 

  29. Du H, Xie X, Zhu Q, Lin L, Jiang YF, Yang ZK, Zhou X, Xu AW. Metallic MoO2 cocatalyst significantly enhances visible-light photocatalytic hydrogen production over MoO2/Zn0.5Cd0.5S heterojunction. Nanoscale. 2015;7(13):5752. https://doi.org/10.1039/C4NR06949H.

    Article  CAS  Google Scholar 

  30. Zhang HB, Zhang P, Qiu M, Dong JC, Zhang YF, Lou XW. Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv Mater. 2019;31(6):1804883. https://doi.org/10.1002/adma.201804883.

    Article  CAS  Google Scholar 

  31. Chen ZG, Xia KX, She XJ, Mo Z, Zhao SW, Yi JJ, Xu YG, Chen HX, Xu H, Li HM. 1D metallic MoO2-C as co-catalyst on 2D g-C3N4 semiconductor to promote photocatlaytic hydrogen production. Appl Surf Sci. 2018;447:732. https://doi.org/10.1016/j.apsusc.2018.03.226.

    Article  CAS  Google Scholar 

  32. Gao ZQ, Chen KY, Wang L, Bai B, Liu H, Wang QZ. Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. Appl Catal B. 2020;268:118462. https://doi.org/10.1016/j.apcatb.2019.118462.

    Article  CAS  Google Scholar 

  33. Subudhi S, Tripathy SP, Parida K. Metal oxide integrated metal organic frameworks (MO@MOF): rational design, fabrication strategy, characterization and emerging photocatalytic applications. Inorg Chem Front. 2021;8(6):1619. https://doi.org/10.1039/D0QI01117G.

    Article  CAS  Google Scholar 

  34. Cao XH, Zheng B, Shi WH, Yang J, Fan ZX, Luo ZM, Rui XH, Chen B, Yan QY, Zhang H. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater. 2015;27(32):4695. https://doi.org/10.1002/adma.201501310.

    Article  CAS  Google Scholar 

  35. Zhang BH, Xue YG, Jiang AN, Xue ZM, Li ZH, Hao JC. Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO2 for efficient hydrogen evolution. ACS Appl Mater Inter. 2017;9(8):7217. https://doi.org/10.1021/acsami.7b00722.

    Article  CAS  Google Scholar 

  36. Shi XW, Mao L, Yang P, Zheng HJ, Fujitsuka M, Zhang JY, Majima T. Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution. Appl Catal B. 2020;265:118616. https://doi.org/10.1016/j.apcatb.2020.118616.

    Article  CAS  Google Scholar 

  37. Chen W, Yan RQ, Zhu JQ, Huang GB, Chen Z. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Appl Surf Sci. 2020;504:144406. https://doi.org/10.1016/j.apsusc.2019.144406.

    Article  CAS  Google Scholar 

  38. Xu YF, Yan AH, Jiang L, Huang F, Hu DN, Duan GH, Zheng FY. MoS2/HCSs/ZnIn2S4 nanocomposites with enhanced charge transport and photocatalytic hydrogen evolution performance. J Alloy Compd. 2021;895:162504. https://doi.org/10.1016/j.jallcom.2021.162504.

    Article  CAS  Google Scholar 

  39. Mehmood S, Zhao XJ, Bhopal MF, Khan FU, Yang YT, Wang GP, Pan XF. MoO2-Ni-graphene ternary nanocomposite for a high-performance room-temperature ethanol gas sensor. Appl Surf Sci. 2021;554:149595. https://doi.org/10.1016/j.apsusc.2021.149595.

    Article  CAS  Google Scholar 

  40. Ma MT, Lin YM, Maheskumar V, Li PY, Li JY, Wang ZK, Zhang MJ, Jiang ZY, Zhang RQ. A highly efficient (Mo, N) codoped ZnIn2S4/g-C3N4 Z-scheme photocatalyst for the degradation of methylene blue. Appl Surf Sci. 2022;585:152607. https://doi.org/10.1016/j.apsusc.2022.152607.

    Article  CAS  Google Scholar 

  41. Zhou JH, Guo SJ. Carbon-based anode materials for potassium-ion batteries: from material, mechanism to performance. SmartMat. 2021;2(2):176. https://doi.org/10.1002/smm2.1042.

    Article  CAS  Google Scholar 

  42. Wang HQ. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022;15(4):2834. https://doi.org/10.1007/s12274-021-3984-9.

    Article  CAS  Google Scholar 

  43. Dai FX, Wang Y, Zhao RY, Zhou XR, Han JS, Wang L. ZnIn2S4 modified CaTiO3 nanocubes with enhanced photocatalytic hydrogen performance. Int J Hydrog Energy. 2020;45(53):28783. https://doi.org/10.1016/j.ijhydene.2020.07.228.

    Article  CAS  Google Scholar 

  44. Liu MZ, Yang Y, Luan XB, Dai X, Zhang X, Yong JX, Qiao HY, Zhao HH, Song WY, Huang XL. Interface-synergistically enhanced acidic, neutral and alkaline hydrogen evolution reaction over Mo2C/MoO2 heteronanorods. ACS Sustain Chem Eng. 2018;6(11):14356. https://doi.org/10.1021/acssuschemeng.8b03026.

    Article  CAS  Google Scholar 

  45. Gao F, Zhao Y, Zhang LL, Wang B, Wang YZ, Huang XY, Wang KQ, Feng WH, Liu P. Well dispersed MoC quantum dots in ultrathin carbon film as efficient cocatalyst for photocatalytic H2 evolution. J Mater Chem A. 2018;6:18979. https://doi.org/10.1039/C8TA06029K.

    Article  CAS  Google Scholar 

  46. Zhang ZY, Huang JD, Zhang MY, Yuan Q, Dong B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl Catal B Environ. 2015;163:298. https://doi.org/10.1016/j.apcatb.2014.08.013.

    Article  CAS  Google Scholar 

  47. Ma XD, Ma WX, Jiang DL, Jiang DL, Li D, Chen M. Construction of novel WO3/SnNb2O6 hybrid nanosheet heterojunctions as efficient Z-scheme photocatalysts for pollutant degradation. J Colloid Interface Sci. 2017;506:93. https://doi.org/10.1016/j.jcis.2017.07.017.

    Article  CAS  Google Scholar 

  48. Zhang Q, Zhang JH, Wang XH, Li LF, Li YF, Dai WL. In–N–In sites boosting interfacial charge transfer in carbon-coated hollow tubular In2O3/ZnIn2S4 heterostructure derived from In-MOF for enhanced photocatalytic hydrogen evolution. ACS Catal. 2021;11(10):6276. https://doi.org/10.1021/acscatal.0c05520.

    Article  CAS  Google Scholar 

  49. Wang L, Gao ZQ, Li Y, She HD, Huang JW, Yu BR, Wang QZ. Photosensitization of CdS by acid red-94 modified alginate: dual ameliorative effect upon photocatalytic hydrogen evolution. Appl Surf Sci. 2019;492:598. https://doi.org/10.1016/j.apsusc.2019.06.222.

    Article  CAS  Google Scholar 

  50. Ye L, Fu JL, Xu Z, Yuan RS, Li ZH. Facile one-pot solvothermal method to synthesize sheet-on-sheet reduced graphene oxide (RGO)/ZnIn2S4 nanocomposites with superior photocatalytic performance. ACS Appl Mater Interfaces. 2014;6(5):3483. https://doi.org/10.1021/am5004415.

    Article  CAS  Google Scholar 

  51. Tao R, Zhao CC, Shao CL, Li XH, Li XW, Zhang J, Yang S, Liu YH. Bi2WO6/ZnFe2O4 heterostructures nanofibers: enhanced visible-light photocatalytic activity and magnetically separable property. Mater Res Bull. 2018;104:124. https://doi.org/10.1016/j.materresbull.2018.03.041.

    Article  CAS  Google Scholar 

  52. Ma XD, Jiang DL, Xiao P, Jin Y, Meng SC, Chen M. 2D/2D heterojunctions of WO3 nanosheet/K+Ca2Nb3O10−ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis. Catal Sci Technol. 2017;7(16):3481. https://doi.org/10.1039/C7CY00976C.

    Article  CAS  Google Scholar 

  53. Zhong DL, Liu WW, Tan PF, Zhu AQ, Liu Y, Xiong X, Pan J. Insights into the synergy effect of anisotropic 001 and 230 facets of BaTiO3 nanocubes sensitized with CdSe quantum dots for photocatalytic water reduction. Appl Catal B. 2018;227:1. https://doi.org/10.1016/j.apcatb.2018.01.009.

    Article  CAS  Google Scholar 

  54. Tan PF, Zhu AQ, Qiao LL, Zeng WX, Cui H, Pan J. Manganese oxide at cadmium sulfide (MnOx@CdS) shells encapsulated with graphene: a spatially separated photocatalytic system towards superior hydrogen evolution. J Colloid Interface Sci. 2019;533:452. https://doi.org/10.1016/j.jcis.2018.08.102.

    Article  CAS  Google Scholar 

  55. Lin B, Li H, An H, Hao WB, Wei JJ, Dai YZ, Ma CS, Yang GD. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B. 2018;220:542. https://doi.org/10.1016/j.apcatb.2017.08.071.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education (No. JKF21-08), the Open Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education (No. BWPU2021KF05), the National Natural Science Foundation of China (No. 62104003), the Natural Science Foundation of Anhui Province (No. 1908085QB75), Anhui Provincial Scientific and Technological Major Project (No. 18030801109), and the Opening Project of Engineering Technology Research Center of Anhui Education Department for Energy Saving and Pollutant Control in metallurgical process (No. GKF20-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Jun Liu or Fu-Ping Qian.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5287 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Zhou, SA., Ma, Y. et al. N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare Met. 42, 1195–1204 (2023). https://doi.org/10.1007/s12598-022-02196-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02196-7

Keywords

Navigation