Skip to main content

Advertisement

Log in

Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

In order to realize electrochemical upgrading and improve the energy conversion efficiency, an ingenious strategy of constructing a thermodynamically favorable oxidation reaction to replace oxygen evolution reaction (OER) is proposed. Here we report the self-supported NiCo-based metal–organic framework (MOF) nanosheet arrays grown on a stainless-steel mesh (NiCo-SS), which can be used as a highly efficient and cost-effective electrocatalyst for ethylene glycol oxidation reaction (EGOR) coupling with hydrogen evolution reaction (HER) in the pair-electrolysis system to concurrently produce value-added formate and high-purity hydrogen. Impressively, the required potential for EGOR at the anode is 200 mV lower than that for OER to deliver the same current density of 100 mA·cm−2. In addition, the pair-electrolysis of selective ethylene glycol oxidation and hydrogen evolution only requires a quite low voltage of 1.68 V to achieve the current density of 50 mA·cm−2 in the membrane-free dual-electrode electrolytic cell, 200 mV smaller than that for overall water splitting. Moreover, Faradaic efficiencies of over 80% for formate production have been obtained. This work indicates that it is prospective to employ earth-abundant electrocatalysts to concurrently produce high-purity hydrogen and value-added formate, which would be a promising technology for supplying clean and renewable energy.

Graphical abstract

摘要

为了实现电化学升级和提高能量转换效率, 我们提出了一种构建热力学有利的氧化反应取代析氧反应 (OER) 的巧妙策略。在这里, 我们报道了在不锈钢网 (NiCo-SS) 上生长自支撑镍钴基金属有机框架 (MOF) 纳米片阵列, 作为乙二醇氧化反应 (EGOR) 与析氢反应 (HER) 电解对系统中的高效、经济的电催化剂, 同时产生高附加值甲酸和高纯氢气。令人印象深刻的是, 在100 mA·cm−2的相同电流密度下, EGOR在阳极上所需的电位比OER低200 mV。此外, 在无膜双电极电解池中, 乙二醇选择性氧化和析氢反应仅需1.68 V的较低电压即可达到50 mA·cm−2的电流密度, 比整体水分解的电压小200 mV。 此外, 还获得了超过80%的甲酸法拉第效率。研究结果表明, 利用廉价的电催化剂同时生产高纯氢和高附加值甲酸是一种很有前景的清洁可再生能源技术。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Li Y, Wei X, Chen L, Shi J, He M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat Commun. 2019;10(1):5335. https://doi.org/10.1038/s41467-019-13375-z.

    Article  Google Scholar 

  2. Xu Y, Liu M, Wang M, Ren T, Ren K, Wang Z, Li X, Wang L, Wang H. Methanol electroreforming coupled to green hydrogen production over bifunctional NiIr-based metal–organic framework nanosheet arrays. Appl Catal B-Environ. 2022;300: 120753. https://doi.org/10.1016/j.apcatb.2021.120753.

    Article  CAS  Google Scholar 

  3. Xu Y, Kraft M, Xu R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem Soc Rev. 2016;45(11):3039. https://doi.org/10.1039/c5cs00729a.

    Article  CAS  Google Scholar 

  4. Yuan FH, Mohammadi MR, Ma LL, Gui ZD, Zhu SL, Li ZY, Wu SL, Jiang H, Liang YQ. Electrodeposition of self-supported NiMo amorphous coating as an efficient and stable catalyst for hydrogen evolution reaction. Rare Met. 2022. https://doi.org/10.1007/s12598-022-01967-6.

    Article  Google Scholar 

  5. Li M, Deng X, Liang Y, Xiang K, Wu D, Zhao B, Yang H, Luo JL, Fu XZ. CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J Energy Chem. 2020;50:314. https://doi.org/10.1016/j.jechem.2020.03.050.

    Article  Google Scholar 

  6. Xiao W, Zhang L, Bukhvalov D, Chen Z, Zou Z, Shang L, Yang X, Yan D, Han F, Zhang T. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy. 2020;70: 104445. https://doi.org/10.1016/j.nanoen.2020.104445.

    Article  CAS  Google Scholar 

  7. Chen Z, Liu D, Gao Y, Zhao Y, Xiao W, Xu G, Ma T, Wu Z, Wang L. Corrosive-coordinate engineering to construct 2D–3D nanostructure with trace Pt as efficient bifunctional electrocatalyst for overall water splitting. Sci China Mater. 2021. https://doi.org/10.1007/s40843-021-1943-5.

    Article  Google Scholar 

  8. You B, Tang MT, Tsai C, Abild-Pedersen F, Zheng X, Li H. Enhancing electrocatalytic water splitting by strain engineering. Adv Mater. 2019;31(17):1807001. https://doi.org/10.1002/adma.201807001.

    Article  CAS  Google Scholar 

  9. Wang T, Cao X, Qin H, Chen X, Li J, Jiao L. Integrating energy-saving hydrogen production with methanol electrooxidation over Mo modified Co4N nanoarrays. J Mater Chem A. 2021;9(37):21094. https://doi.org/10.1039/d1ta05894k.

    Article  CAS  Google Scholar 

  10. Cao C, Ma DD, Jia J, Xu Q, Wu XT, Zhu QL. Divergent paths, same goal: a pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal–organic-framework-derived 2D electrocatalysts. Adv Mater. 2021;33(25):2008631. https://doi.org/10.1002/adma.202008631.

    Article  CAS  Google Scholar 

  11. Hao J, Liu J, Wu D, Chen M, Liang Y, Wang Q, Wang L, Fu XZ, Luo JL. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl Catal B-Environ. 2021;281: 119510. https://doi.org/10.1016/j.apcatb.2020.119510.

    Article  CAS  Google Scholar 

  12. Xiang K, Wu D, Deng X, Li M, Chen S, Hao P, Guo X, Luo JL, Fu XZ. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv Funct Mater. 2020;30(10):1909610. https://doi.org/10.1002/adfm.201909610.

    Article  CAS  Google Scholar 

  13. Geng SK, Zheng Y, Li SQ, Su H, Zhao X, Hu J, Shu HB, Jaroniec M, Chen P, Liu QH, Qiao SZ. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat Energy. 2021;6(9):904. https://doi.org/10.1038/s41560-021-00899-2.

    Article  CAS  Google Scholar 

  14. Chen W, Xu L, Zhu X, Huang YC, Zhou W, Wang D, Zhou Y, Du S, Li Q, Xie C, Tao L, Dong CL, Liu J, Wang Y, Chen R, Su H, Chen C, Zou Y, Li Y, Liu Q, Wang S. Unveiling the electrooxidation of urea: intramolecular coupling of the N–N bond. Angew Chem In Ed. 2021;60(13):7297. https://doi.org/10.1002/anie.202015773.

    Article  CAS  Google Scholar 

  15. Han X, Sheng H, Yu C, Walker TW, Huber GW, Qiu J, Jin S. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 2020;10(12):6741. https://doi.org/10.1021/acscatal.0c01498.

    Article  CAS  Google Scholar 

  16. Ma G, Yang N, Zhou G, Wang X. The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: an efficient system for glyceraldehyde and hydrogen coproduction. Nano Res. 2021. https://doi.org/10.1007/s12274-021-3829-6.

    Article  Google Scholar 

  17. Zhao Y, Jia N, Wu XR, Li FM, Chen P, Jin PJ, Yin S, Chen Y. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Appl Catal B-Environ. 2020;270: 118880. https://doi.org/10.1016/j.apcatb.2020.118880.

    Article  CAS  Google Scholar 

  18. Liu Y, Zhang J, Li Y, Qian Q, Li Z, Zhu Y, Zhang G. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat Commun. 2020;11(1):1853. https://doi.org/10.1038/s41467-020-15563-8.

    Article  CAS  Google Scholar 

  19. Jiang N, You B, Boonstra R, Rodriguez IMT, Sun Y. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co-P-derived electrocatalysts. ACS Energy Lett. 2016;1(2):386. https://doi.org/10.1021/acsenergylett.6b00214.

    Article  CAS  Google Scholar 

  20. Wang T, Tao L, Zhu X, Chen C, Chen W, Du S, Zhou Y, Zhou B, Wang D, Xie C, Long P, Li W, Wang Y, Chen R, Zou Y, Fu XZ, Li Y, Duan X, Wang S. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat Catal. 2022;5(1):66. https://doi.org/10.1038/s41929-021-00721-y.

    Article  CAS  Google Scholar 

  21. Deng X, Li M, Fan Y, Wang L, Fu XZ, Luo JL. Constructing multifunctional “Nanoplatelet-on-Nanoarray” electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Appl Catal B-Environ. 2020;278: 119339. https://doi.org/10.1016/j.apcatb.2020.119339.

    Article  CAS  Google Scholar 

  22. Liu H, Liu Z, Wang F, Feng L. Efficient catalysis of N doped NiS/NiS2 heterogeneous structure. Chem Eng J. 2020;397: 125507. https://doi.org/10.1016/j.cej.2020.125507.

    Article  CAS  Google Scholar 

  23. Xin L, Zhang Z, Qi J, Chadderdon D, Li W. Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: reaction pathway investigation in three-electrode cell and fuel cell reactors. Appl Catal B Environ. 2012;125:85. https://doi.org/10.1016/j.apcatb.2012.05.024.

    Article  CAS  Google Scholar 

  24. Zhou H, Ren Y, Li Z, Xu M, Wang Y, Ge R, Kong X, Zheng L, Duan H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat Commun. 2021;12(1):4679. https://doi.org/10.1038/s41467-021-25048-x.

    Article  CAS  Google Scholar 

  25. Bulushev DA, Ross JRH. Towards sustainable production of formic acid. Chemsuschem. 2018;11(5):821. https://doi.org/10.1002/cssc.201702075.

    Article  CAS  Google Scholar 

  26. Si D, Xiong B, Chen L, Shi J. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catal. 2021;1(4):941. https://doi.org/10.1016/j.checat.2021.08.001.

    Article  Google Scholar 

  27. Wu YL, Li X, Wei YS, Fu Z, Wei W, Wu XT, Zhu QL, Xu Q. Ordered macroporous superstructure of nitrogen-noped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient PH-universal hydrogen evolution reaction. Adv Mater. 2021;33(12):2006965. https://doi.org/10.1002/adma.202006965.

    Article  CAS  Google Scholar 

  28. Qiao B, Yang T, Shi S, Jia N, Chen Y, Chen X, An Z, Chen P. Highly active hollow RhCu nanoboxes toward ethylene glycol electrooxidation. Small. 2021;17(10):2006534. https://doi.org/10.1002/smll.202006534.

    Article  CAS  Google Scholar 

  29. Gao F, Zhang Y, Ren F, Shiraishi Y, Du Y. Universal surfactant free strategy for self-standing 3D tremella-like Pd–M (M =Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis. Adv Funct Mater. 2020;30(16):2000255. https://doi.org/10.1002/adfm.202000255.

    Article  CAS  Google Scholar 

  30. Gao F, Zhang Y, Wu Z, You H, Du Y. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord Chem Rev. 2021;436: 213825. https://doi.org/10.1016/j.ccr.2021.214244.

    Article  CAS  Google Scholar 

  31. Gao F, Zhang Y, Song P, Wang J, Yan B, Sun Q, Li L, Zhu X, Du Y. Shape-control of one-dimensional PtNi nanostructure as efficient electrocatalysts for alcohol electrooxidation. Nanoscale. 2019;11(11):4831. https://doi.org/10.1039/c8nr09892a.

    Article  CAS  Google Scholar 

  32. Zhang Y, Gao F, You H, Li Z, Zou B, Du Y. Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord Chem Rev. 2022;450: 214244. https://doi.org/10.1016/j.ccr.2021.214244.

    Article  CAS  Google Scholar 

  33. Lam CH, Bloomfield AJ, Anastas PT. A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst. Green Chem. 2017;19(8):1958. https://doi.org/10.1039/c7gc00371d.

    Article  CAS  Google Scholar 

  34. Paula J, Nascimento D, Linares JJ. Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor. J Appl Electrochem. 2015;45(7):689. https://doi.org/10.1007/s10800-015-0848-6.

    Article  CAS  Google Scholar 

  35. Yu ZY, Lang CC, Gao MR, Chen Y, Fu QQ, Duan Y, Yu SH. Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ Sci. 2018;11(7):1890. https://doi.org/10.1039/c8ee00521d.

    Article  CAS  Google Scholar 

  36. Chong X, Liu C, Huang Y, Huang C, Zhang B. Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. Natl Sci Rev. 2020;7:285. https://doi.org/10.1093/nsr/nwz146.

    Article  CAS  Google Scholar 

  37. Liu W, Xie J, Guo Y, Lou S, Gao L, Tang B. Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation. J Mater Chem A. 2019;7(42):24437. https://doi.org/10.1039/c9ta07857f.

    Article  CAS  Google Scholar 

  38. Dang S, Zhu QL, Xu Q. Nanomaterials derived from metal–organic frameworks. Nat Rev Mater. 2018;3(1):17075. https://doi.org/10.1038/natrevmats.2017.75.

    Article  CAS  Google Scholar 

  39. Cui H, Liao HX, Wang ZL, Xie JP, Tan PF, Chu DW, Jun P. Synergistic electronic interaction between ruthenium and nickel–iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 2022. https://doi.org/10.1007/s12598-022-02003-3.

    Article  Google Scholar 

  40. Abdullah MI, Hameed A, Zhang N, Islam MH, Ma M, Pollet BG. Ultrasonically surface-activated nickel foam as a highly efficient monolith electrode for the catalytic oxidation of methanol to formate. ACS Appl Mater Interfaces. 2021;13(26):30603. https://doi.org/10.1021/acsami.1c06258.

    Article  CAS  Google Scholar 

  41. Tian J, Chen J, Liu J, Tian Q, Chen P. Graphene quantum dot engineered nickel–cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy. 2018;48:284. https://doi.org/10.1016/j.nanoen.2018.03.063.

    Article  CAS  Google Scholar 

  42. Cao C, Ma DD, Xu Q, Wu XT, Zhu QL. Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv Funct Mater. 2019;29(6):1807418. https://doi.org/10.1002/adfm.201807418.

    Article  CAS  Google Scholar 

  43. Yan D, Zhang L, Shen L, Hu R, Xiao W, Yang X. Pd nanoparticles enbedded in N-enriched MOF-derived architectures for efficient oxygen reduction reaction in alkaline media. Green Energy Environ. 2022. https://doi.org/10.1016/j.gee.2022.01.011.

    Article  Google Scholar 

  44. Ma FX, Lyu F, Diao Y, Zhou B, Wu J, Kang F, Li Z, Xiao X, Wang P, Lu J, Li YY. Self-templated formation of twin-like metal–organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Res. 2021. https://doi.org/10.1007/s12274-021-3885-y.

    Article  Google Scholar 

  45. Balogun MS, Qiu W, Huang Y, Yang H, Xu R, Zhao W, Li GR, Ji H, Tong Y. Cost-effective alkaline water electrolysis based on nitrogen- and phosphorus-doped self-supportive electrocatalysts. Adv Mater. 2017;29(34):1702095. https://doi.org/10.1002/adma.201702095.

    Article  CAS  Google Scholar 

  46. Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y. NiFe-based metal–organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater. 2018;8(21):1800584. https://doi.org/10.1002/aenm.201800584.

    Article  CAS  Google Scholar 

  47. Sun H, Chen L, Lian Y, Yang W, Lin L, Chen Y, Xu J, Wang D, Yang X, Rummerli MH, Guo J, Zhong J, Deng Z, Jiao Y, Peng Y, Qiao S. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation. Adv Mater. 2020;32(52):2006784. https://doi.org/10.1002/adma.202006784.

    Article  CAS  Google Scholar 

  48. Li M, Jijie R, Barras A, Roussel P, Szunerits S, Boukherroub R. NiFe layered double hydroxide electrodeposited on Ni foam coated with reduced graphene oxide for high-performance supercapacitors. Electrochim Acta. 2019;302:1. https://doi.org/10.1016/j.electacta.2019.01.187.

    Article  CAS  Google Scholar 

  49. Jiang H, Sun M, Wu S, Huang B, Lee CS, Zhang W. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte. Adv Funct Mater. 2021;31(43):2104951. https://doi.org/10.1002/adfm.202104951.

    Article  CAS  Google Scholar 

  50. Deng X, Xu GY, Zhang YJ, Wang L, Zhang J, Li JF, Fu XZ, Luo JL. Understanding the roles of electrogenerated Co3+ and Co4+ in selectivity-tuned 5-hydroxymethylfurfural oxidation. Angew Chem In Ed. 2021;60(37):20535. https://doi.org/10.1002/anie.202108955.

    Article  CAS  Google Scholar 

  51. Xiang K, Guo J, Xu J, Qu T, Zhang Y, Chen S, Hao P, Li M, Xie M, Guo X, Ding W. Surface sulfurization of NiCo-layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis. ACS Appl Energy Mater. 2018;1(8):4040. https://doi.org/10.1021/acsaem.8b00723.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21901246 and 22175174) and the Natural Science Foundation of Fujian Province (Nos. 2020J01116 and 2021J06033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Long Zhu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Wei, W., Li, X. et al. Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays. Rare Met. 41, 3654–3661 (2022). https://doi.org/10.1007/s12598-022-02072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02072-4

Navigation