Skip to main content

Advertisement

Log in

Large-scale doping-engineering enables boron/nitrogen dual-doped porous carbon for high-performance zinc ion capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Zinc ion capacitors (ZICs) have drawn increasing interest in energy storage devices because of their economic benefits, high safety, and long cycling life. Nevertheless, the lack of high-performance cathodes for ZICs remains a key challenge. Here, we fabricated B, N co-doped porous carbon (BN-C) via a salt template strategy. The aqueous ZICs assembled from BN-C cathode delivered a high capacity of 190.2 mAh·g−1 and a remarkable energy density of 105.1 Wh·kg−1. Moreover, systematic characterization verifies that B/N dual-doping promotes the physical adsorption/desorption kinetics of anion and the chemical absorption/desorption kinetics of Zn2+, thus improving the electrochemical performance of ZICs. In addition, the quasi-solid-state pouch-type battery exhibited excellent electrochemical durability and mechanical flexibility, demonstrating its vast application potential as a flexible power source. Overall, this research not only presents a reasonable approach to the large-scale production of carbon cathode materials with excellent electrochemical performance but also strengthens the essential recognition of the charge storage mechanism of heteroatoms-doped carbon materials.

Graphical abstract

摘要

具有高经济效益、高安全性和长循环寿命的锌离子电容器 (ZICs), 在储能领域中引发了大量关注。然而, 寻找高性能的正极材料仍然是一个重大的挑战。本工作通过盐模板策略制备了B, N共掺杂多孔碳 (BN-C), 利用BN-C碳电极组装的水性ZICs具有190.2 mAh·g-1的高容量, 105.1 Wh·kg−1的能量密度。系统的表征表明B/N双掺杂促进了阴离子的物理吸附/脱附和Zn2+的化学吸附/脱附, 从而提高了ZICs的电化学性能。此外, 准固态袋式电池具有优异的电化学性能和机械柔性, 显示出其作为柔性电源的应用潜力。总的来说, 本研究不仅为大规模生产具有优异电化学性能的碳阴极材料提供了一条合理的途径, 而且加强化了对杂原子掺杂碳材料电荷储存机理本质的认识。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hou RL, Liu B, Sun YL, Liu LY, Meng JN, Levi MD, Yan XB. Recent advances in dual carbon based electrochemical energy storage devices. Nano Energy. 2020;72:104728.

    Article  CAS  Google Scholar 

  2. Noori A, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev. 2019;48(5):1272.

    Article  CAS  Google Scholar 

  3. Sun J, Yang SH, Li SS, Cao BQ. Double-activated porous carbons for high-performance supercapacitor electrodes. Rare Met. 2017;36(5):449.

    Article  CAS  Google Scholar 

  4. Wang HY, Deng J, Xu CM, Chen YQ, Xu F, Wang J, Wang Y. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Mater. 2017;7:216.

    Article  Google Scholar 

  5. Yang N, Guo LQ, Ren L, Wan L, Xu L, Zhu TX. Modified LiMn0.8Fe0.2PO4 cathode materials by in-situ ring opening polymerization of caprolactam. Chin J Rare Met. 2020;44(10):1045.

    Google Scholar 

  6. Huang HF, Gui YN, Sun F, Liu ZJ, Ning HL, Wu C, Chen LB. In situ formed three-dimensional (3D) lithium-boron (Li-B) alloy as a potential anode for next-generation lithium batteries. Rare Met. 2021;40(12):3494.

    Article  CAS  Google Scholar 

  7. Zeng LC, Qiu L, Cheng HM. Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 2019;23:434.

    Article  Google Scholar 

  8. Wang JG, Xie KY, Wei BQ. Advanced engineering of nanostructured carbons for lithium-sulfur batteries. Nano Energy. 2015;15:413.

    Article  CAS  Google Scholar 

  9. An YB, Chen S, Zou MM, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon-Si composites. Rare Met. 2019;38(12):1113.

    Article  CAS  Google Scholar 

  10. Li SY, Wang T, Zhu AQ, Huang YP, Yu YY, Qiu JX, Zhao Y, Yong YC, Li HM. Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium ion hybrid supercapacitors. J Mater Chem A. 2019;7(2):693.

    Article  Google Scholar 

  11. Kang R, Zhu WQ, Li S, Zou BB, Wang LL, Li GC, Liu HX, Ng DHL, Qiu JX, Zhao Y, Qiao F, Lian JB. Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor. Rare Met. 2021;40(9):2424.

    Article  CAS  Google Scholar 

  12. Dubal DP, Jayaramulu K, Sunil J, Kment Š, Gomez-Romero P, Narayana C, Zbořil R, Fischer RA. Metal-organic framework (MOF) derived electrodes with robust and fast lithium storage for Li-ion hybrid capacitors. Adv Funct Mater. 2019;29(19):1900532.

    Article  CAS  Google Scholar 

  13. Zou KY, Cai P, Liu C, Li JY, Gao X, Xu LQ, Zou GQ, Hou HS, Liu ZM, Ji XB. A kinetically well-matched full-carbon sodium-ion capacitor. J Mater Chem A. 2019;7(22):13540.

    Article  CAS  Google Scholar 

  14. Pham HD, Fernandoa JFS, Horna M, MacLeod J, Mottaa N, Doherty WOS, Payne A, Nanjundan AK, Golberga D, Dubal D. Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. Electrochim Acta. 2021;389:138717.

    Article  CAS  Google Scholar 

  15. Tian M, Li RH, Liu CF, Long DH, Cao GZ. Aqueous Al-ion supercapacitor with V2O5 mesoporous carbon electrodes. ACS Appl Mater Interfaces. 2019;11(17):15573.

    Article  CAS  Google Scholar 

  16. Liu X, Sun YJ, Tong Y, Wang XY, Zheng JF, Wu YJ, Li HY, Niu L, Hou Y. Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: a review. Nano Energy. 2021;86:106070.

    Article  CAS  Google Scholar 

  17. Qiu C, Zhu XH, Xue L, Ni MZ, Zhao Y, Liu B, Xia H. The function of Mn2+ additive in aqueous electrolyte for Zn/δ-MnO2 battery. Electrochim Acta. 2020;351:136445.

    Article  CAS  Google Scholar 

  18. Zeng XH, Hao JN, Wang ZJ, Mao JF, Guo ZP. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019;20:410.

    Article  Google Scholar 

  19. Liu ZX, Luo XB, Qin LP, Fang GZ, Liang SQ. Progress and prospect of low-temperature zinc metal batteries. Adv Powder Mater. 2021. https://doi.org/10.1016/j.apmate.2021.10.002.

    Article  Google Scholar 

  20. Nan XL, Tang WB, Li XM, Wei DB, Xu H. Rare earth (La, Ce) modification of Zn-Al alloy sacrificial anode materials. Chin J Rare Met. 2021;45(6):664.

    Google Scholar 

  21. Dong LB, Ma XP, Li Y, Zhao L, Liu WB, Cheng JY, Xu CJ, Li BH, Yang QH, Kang FY. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018;13:96.

    Article  Google Scholar 

  22. Fei RX, Wang HW, Wang Q, Qiu RY, Tang SS, Wang R, He BB, Gong YS, Fan HJ. In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors. Adv Energy Mater. 2020;10(47):2002741.

    Article  CAS  Google Scholar 

  23. Kumar R, Sahoo S, Joanni E, Singh RK, Maegawa K, Tan WK, Kawamura G, Kar KK, Matsuda A. Heteroatom doped graphene engineering for energy storage and conversion. Mater Today. 2020;39:47.

    Article  CAS  Google Scholar 

  24. Chang XQ, Ma YF, Yang M, Xing T, Tang LY, Chen TT, Guo QB, Zhu XH, Liu JZ, Xia H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Mater. 2019;23:358.

    Article  Google Scholar 

  25. Lu ZW, Xu XC, Chen YJ, Wang XH, Sun L, Zhuo KL. Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors. Green Energy Environ. 2020;5(1):69.

    Article  CAS  Google Scholar 

  26. Fan LL, Shi ZQ, Ren QJ, Yan L, Zhang FM, Fan LP. Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium ion batteries. Green Energy Environ. 2021;6(2):220.

    Article  Google Scholar 

  27. Yin J, Zhang WL, Wang WX, Alhebshi NA, Salah N, Alshareef HN. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv Energy Mater. 2020;10(37):2001705.

    Article  CAS  Google Scholar 

  28. Fan WJ, Ding J, Ding JN, Zheng YL, Song WQ, Lin JF, Xiao CX, Zhong C, Wang HL, Hu WB. Identifying heteroatomic and defective sites in carbon with dual-ion adsorption capability for high energy and power zinc ion capacitor. Nano-Micro Lett. 2021;13(1):59.

    Article  CAS  Google Scholar 

  29. Lee YG, An GH. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl Mater Interfaces. 2020;12(37):41342.

    Article  CAS  Google Scholar 

  30. Xia QY, Yang H, Wang M, Yang M, Guo QB, Wan LM, Xia H, Yu Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater. 2017;7(22):1701336.

    Article  CAS  Google Scholar 

  31. Lu YY, Li ZW, Bai ZY, Mi HY, Ji CC, Pang H, Yu C, Qiu JS. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy. 2019;66:104132.

    Article  CAS  Google Scholar 

  32. Zhang H, Chen YJ, Ma JH, Tong HX, Yang J, Ni DW, Hu HM, Zheng FQ. A simple thermal decomposition–nitridation route to nanocrystalline boron nitride (BN) from a single N and B source precursor. J Alloys Compd. 2011;509(23):6616.

    Article  CAS  Google Scholar 

  33. Ma XP, Cheng JY, Dong LB, Liu WB, Mou J, Zhao L, Wang JJ, Ren DY, Wu JL, Xu CJ, Kang FY. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 2019;20:335.

    Article  Google Scholar 

  34. Li HX, Wu J, Wang LT, Liao QX, Niu XH, Zhang DY, Wang KJ. A zinc ion hybrid capacitor based on sharpened pencil-like hierarchically porous carbon derived from metal-organic framework. Chem Eng J. 2022;428:131071.

    Article  CAS  Google Scholar 

  35. Han L, Zhang XL, Li JF, Huang HL, Xu XT, Liu XJ, Yang ZL, Xu M, Pan LK. Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode. J Colloid Interface Sci. 2021;599:556.

    Article  CAS  Google Scholar 

  36. Miao L, Duan H, Zhu DZ, Lv YK, Gan LH, Li LC, Liu MX. Boron “gluing” nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity. J Mater Chem A. 2021;9(5):2714.

    Article  CAS  Google Scholar 

  37. Zhao J, Li YJ, Wang GL, Wei T, Liu Z, Cheng K, Ye K, Zhu K, Cao DX, Fan ZJ. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J Mater Chem A. 2017;5(44):23085.

    Article  CAS  Google Scholar 

  38. Sun F, Qu ZB, Gao JH, Wu HB, Liu F, Han R, Wang LJ, Pei T, Zhao GB, Lu YF. In situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance. Adv Funct Mater. 2018;28(41):1804190.

    Article  CAS  Google Scholar 

  39. Wang DW, Li F, Chen ZG, Lu GQ, Cheng HM. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater. 2008;20(22):7195.

    Article  CAS  Google Scholar 

  40. Radovic LR, Karra M, Skokova K, Thrower PA. The role of substitutional boron in carbon oxidation. Carbon. 1998;36(12):1841.

    Article  CAS  Google Scholar 

  41. Liu KL, Yu C, Guo W, Ni L, Yu JH, Xie YY, Wang Z, Ren YW, Qiu JS. Recent research advances of self-discharge in supercapacitors: mechanisms and suppressing strategies. J Energy Chem. 2021;58:94.

    Article  Google Scholar 

  42. Shi X, Zhang HZ, Zeng SQ, Wang J, Cao XS, Liu XQ, Lu XH. Pyrrolic-dominated nitrogen redox enhances reaction kinetics of pitch-derived carbon materials in aqueous zinc ion hybrid supercapacitors. ACS Mater Lett. 2021;3(9):1291.

    Article  CAS  Google Scholar 

  43. Lou GB, Gu P, Wu YT, Lu YZ, Wu YT, Zhu XQ, Pang YJ, Shen ZH, Wu Q, Fu SY, Chen H. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem Eng J. 2021;413:127502.

    Article  CAS  Google Scholar 

  44. Wang L, Wang YQ, Wu MG, Wei ZX, Cui CY, Mao ML, Zhang JT, Han XP, Liu QH, Ma JM. Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small. 2018;14(20):1800737.

    Article  CAS  Google Scholar 

  45. Wang Y, Wang CY, Wang YJ, Liu HK, Huang ZG. Boric acid assisted reduction of graphene oxide: a promising material for sodium-ion batteries. ACS Appl Mater Interfaces. 2016;8(29):18860.

    Article  CAS  Google Scholar 

  46. Ahmad N, Khan M, Zheng XJ, Sun ZH, Yan J, Wei CH, Shen LW, Batool N, Yang RZ. Boron and phosphorous co-doped porous carbon as high-performance anode for sodium-ion battery. Solid State Ion. 2020;356:115455.

    Article  CAS  Google Scholar 

  47. Fan HL, Hu X, Zhang S, Xu ZX, Gao GM, Zheng Y, Hu GZ, Chen QF, AlGarni TS, Luque R. Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon. 2021;180:254.

    Article  CAS  Google Scholar 

  48. Wang DW, Wang SY, Lu ZM. S-doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc-ion hybrid supercapacitor applications. Int J Energy Res. 2020;45(2):2498.

    Article  CAS  Google Scholar 

  49. Jian Z, Yang NJ, Vogel M, Leith S, Schulte A, Schönherr H, Jiao TP, Zhang WJ, Müller J, Butz B, Jiang X. Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv Energy Mater. 2020;10(44):2002202.

    Article  CAS  Google Scholar 

  50. Cui FZ, Liu ZC, Ma DL, Liu LL, Huang T, Zhang PP, Tan DM, Wang FX, Jiang GF, Wu YP. Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chem Eng J. 2021;405:127038.

    Article  CAS  Google Scholar 

  51. Chen SH, Yang GQ, Zhao XJ, Wang NZ, Luo TT, Chen X, Wu TC, Jiang SJ, van Aken PA, Qu SL, Li T, Du L, Zhang J, Wang HB, Wang H. Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor. Front Chem. 2020;8:663.

    Article  CAS  Google Scholar 

  52. Chen CJ, Li ZW, Xu YH, Liao HJ, Wu LY, Dou H, Zhang XG. Deep eutectic solvent-induced polyacrylonitrile-derived hierarchical porous carbon for zinc-ion hybrid supercapacitors. Batteries Supercaps. 2021;4(4):680.

    Article  CAS  Google Scholar 

  53. Zou KY, Cai P, Deng XL, Wang BW, Liu C, Luo Z, Lou XM, Hou HS, Zou GQ, Ji XB. Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chem Commun. 2021;57(4):528.

    Article  CAS  Google Scholar 

  54. An GH. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon. Appl Surf Sci. 2020;530:147220.

    Article  CAS  Google Scholar 

  55. Wang Q, Wang SL, Li JY, Ruan LM, Wei N, Huang LS, Dong ZY, Cheng QH, Xiong Y, Zeng W. A novel aqueous zinc-ion hybrid supercapacitor based on TiS2 (de) intercalation battery-type anode. Adv Electron Mater. 2020;6(10):2000388.

    Article  CAS  Google Scholar 

  56. Huang ZD, Wang TR, Song H, Li XL, Liang GJ, Wang DH, Yang Q, Chen Z, Ma LT, Liu ZX, Gao B, Fan J, Zhi CY. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew Chem Int Ed. 2021;60(2):1011.

    Article  CAS  Google Scholar 

  57. Xu CJ, Li BH, Du HD, Kang FY. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. 2012;51(4):933.

    Article  CAS  Google Scholar 

  58. Li ZW, Chen DH, An YF, Chen CL, Wu LY, Chen ZJ, Sun Y, Zhang XG. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020;28:307.

    Article  CAS  Google Scholar 

  59. Liu PG, Liu WF, Huang YP, Li PL, Yan J, Liu KY. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020;25:858.

    Article  CAS  Google Scholar 

  60. Zhao ZC, Xie YB. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires. J Power Sour. 2018;400:264.

    Article  CAS  Google Scholar 

  61. Zhang HZ, Liu QY, Fang YB, Teng CL, Liu XQ, Fang PP, Tong YX, Lu XH. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv Mater. 2019;31(44):1904948.

    Article  CAS  Google Scholar 

  62. Sun GQ, Yang HS, Zhang GF, Gao J, Jin XT, Zhao Y, Jiang L, Qu LT. A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ Sci. 2018;11(12):3367.

    Article  CAS  Google Scholar 

  63. Cui J, Guo ZW, Yi J, Liu XY, Wu K, Liang PC, Li Q, Liu YY, Wang YG, Xia YY, Zhang JJ. Organic cathode materials for rechargeable zinc batteries: mechanisms, challenges, and perspectives. Chemsuschem. 2020;13(9):2160.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22179123 and 21471139), Shandong Provincial Natural Science Foundation, China (No. ZR2020ME038), Shandong Provincial Key R&D Plan and the Public Welfare Special Program, China (No. 2019GGX102038) and the Fundamental Research Funds for the Central Universities (No. 201941010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan-Lei Wang or Jing-Wei Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, CL., Wang, HL., Fan, WJ. et al. Large-scale doping-engineering enables boron/nitrogen dual-doped porous carbon for high-performance zinc ion capacitors. Rare Met. 41, 2505–2516 (2022). https://doi.org/10.1007/s12598-022-01975-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01975-6

Keywords

Navigation