Skip to main content

Advertisement

Log in

MXene-wrapped ZnCo2S4 core–shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors (ASCs). In this paper, ZnCo2S4 core–shell nanospheres are constructed by two-step hydrothermal method. In order to improve the chemical activity of ZnCo2S4, ZnCo2S4 is activated using cetyltrimethylammonium bromide (CTAB). Then, MXene nanosheets are fixed on the surface of ZnCo2S4 by electrostatic self-assembly method to improve the specific surface area of ZnCo2S4 and MXene-wrapped ZnCo2S4 composite is prepared in this work. Owing to the synergy effect between MXene nanosheets and ZnCo2S4 core–shell nanospheres, the as-prepared composite displays fast ion transfer rate and charge/discharge process. The capacity of the MXene-wrapped ZnCo2S4 composite can reach 1072 F·g−1, which is far larger than that of ZnCo2S4 (407 F·g−1) at 1 A·g−1. An ASC device is assembled, which delivers 1.7 V potential window and superior cyclic stability (95.41% capacitance retention). Furthermore, energy density of this device is up to 30.46 Wh·kg−1 at a power density of 850 W·kg−1. The above results demonstrate that MXene-wrapped ZnCo2S4 composite has great application prospects in electrochemical energy storage field.

Graphical abstract

摘要

构建具有大容量和良好导电性的电极材料是提高非对称超级电容器 (ASCs) 电容器性能的有效途径。在本文中, ZnCo2S4 核壳纳米球是通过两步水热法合成的。为了提高 ZnCo2S4 的化学活性, 使用十六烷基三甲基溴化铵 (CTAB) 活化 ZnCo2S4。然后, 通过静电自组装方法将MXene纳米片固定在ZnCo2S4表面, 提高了ZnCo2S4的比表面积, 获得了MXene包裹的ZnCo2S4结构。由于 MXene 纳米片和 ZnCo2S4 核壳纳米球之间的协同作用, 所制备的复合材料显示出快速的离子转移速率和充放电过程。 MXene包裹的ZnCo2S4复合材料的容量可以达到1072 F g−1, 远大于1 A g−1时的ZnCo2S4 (407 F g−1)。并组装了一个 ASC 设备, 它可以提供 1.7 V 的电位窗口和卓越的循环稳定性 (95.41% 的电容保持率)。此外, 该设备的能量密度高达 30.46 Wh kg−1, 功率密度为 850 W kg−1。以上结果表明MXene包裹的ZnCo2S4复合材料在电化学储能领域具有广阔的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):21.

    Article  CAS  Google Scholar 

  2. Gogotsi Y, Simon PJS. True performance metrics in electrochemical energy storage. Science. 2011;334(6058):917.

    Article  CAS  Google Scholar 

  3. Li J, Liu Q, Zhang YX, Jiang JX, Wu HB, Yu XY. Copper and carbon-incorporated yolk-shelled FeP spheres with enhanced sodium storage properties. Chem Eng J. 2021;421(2):261.

    Google Scholar 

  4. Yang J, Yu C, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci. 2016;9(4):1299.

    Article  CAS  Google Scholar 

  5. Lei KX, Wang J, Chen C, Li SY, Wang SW, Zheng SJ, Li FJ. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020;39(9):989.

    Article  CAS  Google Scholar 

  6. Kang J. Simple fabrication of nickel sulfide nanostructured electrode using alternate dip-coating method and its supercapacitive properties. Int J Electrochem Sci. 2017;12(10):9588.

    Article  CAS  Google Scholar 

  7. Garg A, Singh S, Li W, Gao L, Cui XJ, Wang CT, Peng XB, Rajasekar N. Illustration of experimental, machine learning, and characterization methods for study of performance of Li-ion batteries. Int J Energy Res. 2020;44(12):9513.

    Article  Google Scholar 

  8. Park SM. Ryoo HJ. Pulsed power modulator with active pull-down using diode reverse recovery time. IEEE Trans Power Electron. 2019;35(3):2943.

  9. Khatua S, Mukherjee V. Application of integrated microgrid for strengthening the station blackout power supply in nuclear power plant. Prog Nuclear Energy. 2020;118(3):1676.

    Google Scholar 

  10. Fan ZJ. Overview of supercapacitors. Acta Physico-Chimica Sinica. 2020;36(2):69.

  11. Chou SW, Lin JY. Pulse-reversal deposition of nickel sulfide thin film as an efficient cathode material for hybrid supercapacitors. J Electrochem Soc. 2015;162(14):A2762.

    Article  CAS  Google Scholar 

  12. Zou ZB, Xiong XB, Ma J, Zeng XR, Huang T, Li JJ, Li B. In situ two-step electrochemical preparation of fluoride-free nickel-based compound film on nickel plate for supercapacitors. Rare Met. 2016;35(12):930.

  13. Surendran S, Selvan RK. Growth and characterization of 3D flower-like beta-NiS on carbon cloth: a dexterous and flexible multifunctional electrode for supercapattery and water-splitting applications. Adv Mater Interfaces. 2018;5(4):1009.

    Article  CAS  Google Scholar 

  14. Ding J, Hu WB, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. 2018;118(14):1393.

    Article  CAS  Google Scholar 

  15. Lin ZF, Taberna PL, Simon P. Advanced analytical techniques to characterize materials for electrochemical capacitors. Curr Opin Electrochem. 2018;9:18.

    Article  CAS  Google Scholar 

  16. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248.

    Article  CAS  Google Scholar 

  17. Yu Y. Sodium ion energy storage materials and devices. Acta Physico-Chimica Sinica. 2020;36(5):71.

    Google Scholar 

  18. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):1067.

    Article  CAS  Google Scholar 

  19. Zhou A, Wang C, Huang Y. Synthesis and mechanical properties of Ti3 AlC2 by spark plasma sintering. J Mater Sci. 2003;38(14):3111.

    Article  Google Scholar 

  20. Barsoum M. The MN+1AXN phases: a new class of solids. Progress Solid State Chem. 2000;28(1):201.

    Article  CAS  Google Scholar 

  21. Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L, Haines B, May SJ, Billinge SJL, Gogotsi Y. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale. 2017;9(45):17722.

    Article  CAS  Google Scholar 

  22. Naguib M, Mochalin VN, Barsoum MW, Gogotsi YJAM. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992.

    Article  CAS  Google Scholar 

  23. Liu H, Hu R, Qi J, Sui Y, He Y, Meng Q, Wei F, Ren Y, Zhao Y. A facile method for synthesizing NiS nanoflower grown on MXene (Ti3C2Tx) as positive electrodes for “supercapattery”. Electrochimica Acta. 2020;353:107.

    Google Scholar 

  24. Pan Z, Cao F, Hu X, Ji X. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J Mater Chem A. 2019;7(17):8984.

    Article  CAS  Google Scholar 

  25. Qi J, Chang Y, Sui Y, He Y, Meng Q, Wei F, Ren Y, Jin Y. Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv Mater Interfaces. 2018;5(3):1307.

    Google Scholar 

  26. Pothu R, Bolagam R, Wang QH, Ni W, Cai JF, Peng XX, Feng YZ, Ma JM. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 2021;40(2):353.

    Article  CAS  Google Scholar 

  27. Alimohammadi F, Sharifian MG, Attanayake NH, Thenuwara AC, Gogotsi Y, Anasori B, Strongin DR. Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir. 2018;34(24):7192.

    Article  CAS  Google Scholar 

  28. Ning WW, Chen LB, Wei WF, Chen YJ, Zhang XY. NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Met. 2020;39(9):1034.

    Article  CAS  Google Scholar 

  29. Chen R, Wang P, Chen J, Wang C, Ao Y. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl Surf Sci. 2019;473:11.

  30. Liu H, Hu R, Qi J, Sui Y, He Y, Meng Q, Wei F, Ren Y, Zhao Y, Wei W. One-step synthesis of nanostructured CoS2 grown on titanium carbide MXene for high-performance asymmetrical supercapacitors. Adv Mater Interfaces. 2020;7(6):10.

    Article  CAS  Google Scholar 

  31. Xiang G, Yin J, Qu G, Sun P, Hou P, Huang J, Xu X. Construction of ZnCo2S4@Ni(OH)(2) core-shell nanostructures for asymmetric supercapacitors with high energy densities. Inorganic Chem Front. 2019;6(8):2135.

    Article  CAS  Google Scholar 

  32. Cheng C, Zhang X, Wei C, Liu Y, Cui C, Zhang Q, Zhang D. Mesoporous hollow ZnCo2S4 core-shell nanospheres for high performance supercapacitors. Ceram Int. 2018;44(14):170.

    Google Scholar 

  33. Song G, Wang Z, Sun J, Sun J, Yuan D, Zhang L. ZnCo2S4 nanosheet array anchored on nickel foam as electrocatalyst for electrochemical water splitting. Electrochem Commun. 2019;105:17464.

    Article  CAS  Google Scholar 

  34. Chen W, Wei T, Mo LE, Wu S, Li Z, Chen S, Zhang X, Hu L. CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chem Eng J. 2020;400:12.

    Google Scholar 

  35. Vigneshwaran S, Jun BM, Prabhu SM, Elanchezhiyan SS, Ok YS, Meenakshi S, Park CM. Enhanced sonophotocatalytic degradation of bisphenol A using bimetal sulfide-intercalated MXenes, 2D/2D nanocomposite. Sep Purif Technol. 2020;250:190.

    Article  CAS  Google Scholar 

  36. Liu R, Wang Y, Wu X. Two-dimensional nitrogen and oxygen Co-doping porous carbon nanosheets for high volumetric performance supercapacitors. Microporous Mesoporous Mater. 2020;295:196.

    Article  CAS  Google Scholar 

  37. Fu J, Li L, Yun JM, Lee D, Ryu BK, Kim KH. Two-dimensional titanium carbide (MXene)-wrapped sisal-like NiCo2S4 as positive electrode for high-performance hybrid pouch-type asymmetric supercapacitor. Chem Eng J. 2019;375:936.

    Google Scholar 

  38. Golmohammadi R, Najar-Peerayeh S, Moghadam TT, Hosseini SMJ. Synergistic antibacterial activity and wound healing properties of selenium-chitosan-mupirocin nanohybrid system: an in vivo study on rat diabetic Staphylococcus aureus wound infection model. Sci Rep. 2020;10(1):729.

    Article  CAS  Google Scholar 

  39. Zhang DD, Cao J, Zhang XY, Insin N, Liu RP, Qin JQ. NiMn layered double hydroxide nanosheets in-situ anchored on Ti3C2 MXene via chemical bonds for superior supercapacitors. Acs Appl Energy Mater. 2020;3(6):5949.

    Article  CAS  Google Scholar 

  40. Guo J, Zhao Y, Liu A, Ma T. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim Acta. 2019;305:164.

    Article  CAS  Google Scholar 

  41. Jiang S, Dong S, Wu L, Chen Z, Shen L, Zhang X. Pseudocapacitive T-Nb2O5/N-doped carbon nanosheets anode enable high performance lithium-ion capacitors. J Electroanal Chem. 2019;842:82.

    Article  CAS  Google Scholar 

  42. Lei K, Ling J, Zhou J, Zou H, Yang W, Chen S. Formation of CoS2/N, S-codoped porous carbon nanotube composites based on bimetallic zeolitic imidazolate organic frameworks for supercapacitors. Mater Res Bull. 2019;116:59.

    Article  CAS  Google Scholar 

  43. Zhang Y, Cao N, Li M, Szunerits S, Addad A, Roussel P, Boukherroub R. Self-template synthesis of ZnS/Ni3S2 as advanced electrode material for hybrid supercapacitors. Electrochimica Acta. 2019;328:1011.

    Google Scholar 

  44. Li B, Zhang GX, Huang KS, Qiao LF, Pang H. One-step synthesis of CoSn(OH)(6) nanocubes for high-performance all solid-state flexible supercapacitors. Rare Met. 2017;36(5):457.

  45. Lu X, Zeng Y, Yu M, Zhai T, Liang C, Xie S, Balogun MS, Tong Y. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater. 2020;26(19):3148.

    Article  CAS  Google Scholar 

  46. Zhang C, Anasori B, Seral-Ascaso A, Park SH, McEvoy N, Shmeliov A, Duesberg GS, Coleman JN, Gogotsi Y, Nicolosi V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater. 2017;29(36):171.

    Google Scholar 

  47. Wu W, Wei D, Zhu J, Niu D, Wang F, Wang L, Yang L, Yang P, Wang C. Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram Int. 2019;45(6):7328.

    Article  CAS  Google Scholar 

  48. Zou R, Quan H, Pan M, Zhou S, Chen D, Luo X. Self-assembled MXene(Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim Acta. 2018;292:31.

    Article  CAS  Google Scholar 

  49. Zhu J, Tang Y, Yang C, Wang F, Cao M. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J Electrochem Soc. 2016;163(5):785.

    Article  CAS  Google Scholar 

  50. Jiang H, Wang Z, Yang Q, Tan L, Dong L, Dong M. Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 2019;11(1):1098.

    Google Scholar 

  51. Wang Y, Dou H, Wang J, Ding B, Xu Y, Chang Z, Hao X. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources. 2016;327:221.

    Article  CAS  Google Scholar 

  52. Shen L, Zhou X, Zhang X, Zhang Y, Liu Y, Wang W, Si W, Dong X. Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J Mater Chem A. 2018;6(46):23513.

    Article  CAS  Google Scholar 

  53. Jiang H, Wang Z, Yang Q, Hanif M, Wang Z, Dong L, Dong M. A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim Acta. 2018;290:695.

    Article  CAS  Google Scholar 

  54. Zhou H, Lu Y, Wu F, Fang L, Luo H, Zhang Y, Zhou M. MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. J Alloy Compd. 2019;802:259.

    Article  CAS  Google Scholar 

  55. Oyedotun KO, Momodu DY, Naguib M, Mirghni AA, Masikhwa TM, Khaleed AA, Kebede M, Manyala N. Electrochemical performance of two-dimensional Ti3C2-Mn3O4 nanocomposites and carbonized iron cations for hybrid supercapacitor electrodes. Electrochim Acta. 2019;301:487.

    Article  CAS  Google Scholar 

  56. Liu R, Zhang A, Tang J, Tian J, Huang W, Cai J, Barrow C, Yang W, Liu J. Fabrication of cobaltosic oxide nanoparticle-doped 3D MXene/graphene hybrid porous aerogels for all-solid-state supercapacitors. Chem-A Eur J. 2019;25(21):5547.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Qiu Qi, Wen-Qing Wei, Hao Zhang or Peng Cao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9532 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, JQ., Zhang, CC., Liu, H. et al. MXene-wrapped ZnCo2S4 core–shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors. Rare Met. 41, 2633–2644 (2022). https://doi.org/10.1007/s12598-021-01956-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01956-1

Keywords

Navigation