Skip to main content
Log in

High-entropy intermetallics: from alloy design to structural and functional properties

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Conventional intermetallics are strong but brittle. However, multi-principal element intermetallics, also termed as high-entropy intermetallics (HEIs) in the recent high-entropy alloy literature, are strong but malleable, some of which even show appreciable ductility and fracture toughness at room temperature. In this article, we provide a focused review on the recent researches on HEIs, from the fundamentals, such as the concept of HEIs, the formation rules to the structural and functional properties of HEIs. The results hitherto reported clearly show that the HEIs with distinct properties could be a promising material for future structural and functional applications.

Graphical Abstract

摘要

传统的金属间化合物强度高但脆。然而, 多主元素金属间化合物, 也被称为高熵金属间化合物, 可以同时具有高强度和延展性, 其中一些甚至在室温下表现出可观的断裂韧性。在本文中, 我们从高熵金属间化合物的概念、形成规则到结构和功能特性, 重点综述了近年来有关高熵金属间化合物的研究。迄今报道的结果清楚地表明, 具有独特性能的高熵金属间化合物在未来有望成为优秀的结构和功能性材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taub AI, Fleischer RL. Intermetallic compounds for high-temperature structural use. Science. 1989;243(4891):616.

    Article  CAS  Google Scholar 

  2. Nakamura M. Fundamental properties of intermetallic compounds. MRS Bull. 1995;20(8):33.

    Article  CAS  Google Scholar 

  3. Oliynyk AO, Mar A. Discovery of intermetallic compounds from traditional to machine-learning approaches. Acc Chem Res. 2018;51(1):59.

    Article  CAS  Google Scholar 

  4. Nesper R. Bonding patterns in intermetallic compounds. Angew Chem Int Ed Engl. 1991;30(7):789.

  5. Smith CS. An examination of the arsenic-rich coating on a bronze bull from Horoztepe. In: Proceedings of the application of science in examination of works of art-proceedings of the seminar. Boston; 1970. 96.

  6. Westbrook JH. Intermetallic compounds: their past and promise. Metall Trans A. 1977;8(9):1327.

    Article  Google Scholar 

  7. Ponou S, Miller GJ. Synergistic geometrical and electronic features in the intermetallic phases Ca2AgM2, Ca2MgM2, and Ca2GaM2(M= Pd, Pt). Z Anorg Allg Chem. 2015;641(6):1069.

    Article  CAS  Google Scholar 

  8. Marakatti VS, Peter SC. Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts. Prog Solid State Chem. 2018;52:1.

    Article  CAS  Google Scholar 

  9. Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics, 2004; 12(7–9):713.

  10. Burch R, Mason NB. The relative importance of geometric and electronic contributions to the thermodynamic properties of body-centred cubic metal hydrides. J Less-Common Met. 1979;63(1):57.

    Article  CAS  Google Scholar 

  11. Hume-Rothery W. Researches on the nature, properties, and condition of formation of intermetallic compounds. J Inst Met. 1926;35:319.

    Google Scholar 

  12. Hume-Rothery W, Reynolds PW, Raynor GV. Factors affecting the formation of 3/2 electron compounds in alloys of copper, silver and gold. J Inst Met. 1940;66:191.

    CAS  Google Scholar 

  13. Min X, Sun Y, Xue F, Du W, Wu D. Analysis of valence electron structures (VES) of intermetallic compounds containing calcium in Mg–Al-based alloys. Mater Chem Phys. 2003;78(1):88.

    Article  Google Scholar 

  14. Zintl E, Dallenkopf W. Über den gitterbau von NaTl und seine beziehung zu den strukturen vom typus des β-messings. Z Phys Chem. 1932;16(1):195.

    Article  Google Scholar 

  15. Zintl E. Intermetallische verbindungen. Angew Chem. 1939;52(1):1.

    Article  CAS  Google Scholar 

  16. Yvon K, Paoli A. Charge transfer and valence electron concentration in Chevrel phases. Solid State Commun. 1977;24(1):41.

    Article  CAS  Google Scholar 

  17. Laves F. Crystal structure and atomic size. In: Theory of Alloy Phases, Am. Soc. for Metals. Cleveland; 1956;124.

  18. Laves F. Factors governing the structure of intermetallic phases. Adv X-Ray Anal. 1962;6:43.

    Google Scholar 

  19. van Vucht JHN. Influence of radius ratio on the structure of intermetallic compounds of the AB3 type. J Less-Common Met. 1966;11(5):308.

    Article  Google Scholar 

  20. Pearson WB. The Crystal Chemistry and Physics of Metals and Alloys. New York: Wiley-Inter-science. 1972. 135.

  21. Thoma DJ, Perepezko JH. A geometric analysis of solubility ranges in Laves phases. J Alloys Compd. 1995;224(2):330.

    Article  CAS  Google Scholar 

  22. Mott NF, Jones H. The Theory of the Properties of Metals and Alloys. New York: Courier Dover Publications. 1958. 152.

  23. Mizutani U, Sato H, Inukai M, Zijlstra ES. Theoretical foundation for the Hume-Rothery electron concentration rule for structurally complex alloys. Acta Phys. Pol., A, 2014; 126(2):531.

  24. Mizutani U, Sato H. The physics of the Hume-Rothery electron concentration rule. Curr Comput-Aided Drug Des. 2017;7(1):9.

    Google Scholar 

  25. Stacey TE, Fredrickson DC. The μ3 model of acids and bases: extending the Lewis theory to intermetallics. Inorg Chem. 2012;51(7):4250.

    Article  CAS  Google Scholar 

  26. Duan YH, Wu ZY, Huang B, Chen S. Phase stability and anisotropic elastic properties of the Hf–Al intermetallics: a DFT calculation. Comput Mater Sci. 2015;110:10.

    Article  CAS  Google Scholar 

  27. Shou H, Xie R, Peng M, Duan Y, Sun Y. Stability and electronic structures of the TiZn intermetallic compounds: a DFT calculation. Phys B Condens Matter. 2019;560:41.

    Article  CAS  Google Scholar 

  28. Villars P, Cenzual K. Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds—User Manual, Release 2011/12, ASM International ®, Materials Park, Ohio, USA. 2011.

  29. Dshemuchadse J, Steurer W. Some statistics on intermetallic compounds. Inorg Chem. 2015;54(3):1120.

    Article  CAS  Google Scholar 

  30. Steurer W, Dshemuchadse J. Intermetallics: Structures, Properties, and Statistics. Oxford: Oxford University Press. 2016. 91.

    Book  Google Scholar 

  31. Fleischer RL, Dimiduk DM, Lipsitt HA. Intermetallic compounds for strong high-temperature materials: status and potential. Annu Rev Mater Sci. 1989;19(1):231.

    Article  CAS  Google Scholar 

  32. Fleischer RL. High-strength, high-temperature intermetallic compounds. J Mater Sci. 1987;22(7):2281.

    Article  CAS  Google Scholar 

  33. Liu CT, Stringer J, Mundy JN, Horton LL, Angelini P. Ordered intermetallic alloys: an assessment. Intermetallics. 1997;5(8):579.

    Article  CAS  Google Scholar 

  34. Ward-Close CM, Minor R, Doorbar PJ. Intermetallic-matrix composites—a review. Intermetallics. 1996;4(3):217.

    Article  CAS  Google Scholar 

  35. Liu CT, Stiegler JO. Ductile ordered intermetallic alloys. Science. 1984;226(4675):636.

    Article  CAS  Google Scholar 

  36. Russell AM. Ductility in intermetallic compounds. Adv Eng Mater. 2003;5(9):629.

    Article  CAS  Google Scholar 

  37. Gschneidner K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Lo CH, Ye Y, Slager A, Kesse D. A family of ductile intermetallic compounds. Nat Mater. 2003;2(9):587.

    Article  CAS  Google Scholar 

  38. Furukawa S, Komatsu T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2016;7(1):735.

    Article  CAS  Google Scholar 

  39. Rößner L, Armbrüster M. Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal. 2019;9(3):2018.

    Article  CAS  Google Scholar 

  40. Firstov GS, Van Humbeeck J, Koval YN. Comparison of high temperature shape memory behaviour for ZrCu-based, Ti–Ni–Zr and Ti–Ni–Hf alloys. Scr Mater. 2004;50(2):243.

    Article  CAS  Google Scholar 

  41. Cortie MB, Kealley CS, Bhatia V, Thorogood GJ, Elcombe MM, Avdeev M. High temperature transformations of the Au7Cu5Al4 shape-memory alloy. J Alloys Compd. 2011;509(8):3502.

    Article  CAS  Google Scholar 

  42. Cava RJ, Takagi H, Zandbergen HW, Krajewski JJ, Peck WF, Siegrist T, Batlogg B, van Dover RB, Felder RJ, Mizuhashi K, Lee JO, Eisaki H, Uchida S. Superconductivity in the quaternary intermetallic compounds LnNi2B2C. Nature. 1994;367(6460):252.

    Article  CAS  Google Scholar 

  43. Tran VH, Sahakyan M, Bukowski Z. Discovery of superconductivity in AlB2-type hexagonal YGa2. J. Phys.: Condens. Matter, 2021; 33(31):315401.

  44. Mandrus D, Keppens V, Sales BC, Sarrao JL. Unusual transport and large diamagnetism in the intermetallic semiconductor RuAl2. Phys Rev B. 1998;58(7):3712.

    Article  CAS  Google Scholar 

  45. Amon A, Svanidze E, Ormeci A, Konig M, Kasinathan D, Takegami D, Prots Y, Liao YF, Tsuei KD, Tjeng LH, Leithe-Jasper A, Grin Y. Interplay of atomic interactions in the intermetallic semiconductor Be5 Pt. Angew. Chem. Int. Ed., 2019; 58(44):15928.

  46. Dantzer P. Properties of intermetallic compounds suitable for hydrogen storage applications. Mater Sci Eng A. 2002;329:313.

    Article  Google Scholar 

  47. Okada M, Kuriiwa T, Kamegawa A, Takamura H. Role of intermetallics in hydrogen storage materials. Mater Sci Eng A. 2002;329:305.

    Article  Google Scholar 

  48. Zhu X, Yao Z, Gu X, Cong W, Zhang P. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology. Trans Nonferrous Met Soc China. 2009;19(1):143.

    Article  CAS  Google Scholar 

  49. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    Article  CAS  Google Scholar 

  50. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213.

    Article  CAS  Google Scholar 

  51. Picak S, Yilmaz HC, Karaman I. Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures. Scr. Mater. 2021; 202:113995.

  52. Waseem OA, Ryu HJ. Combinatorial synthesis and analysis of AlxTayVz-Cr20Mo20Nb20Ti20Zr10 and Al10CrMoxNbTiZr10 refractory high-entropy alloys: oxidation behavior. J. Alloys Compd. 2020; 828:154427.

  53. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1.

    Article  CAS  Google Scholar 

  54. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10(6):534.

    Article  CAS  Google Scholar 

  55. Ye YF, Wang Q, Lu J, Liu CT, Yang Y. Design of high entropy alloys: a single-parameter thermodynamic rule. Scr Mater. 2015;104:53.

    Article  CAS  Google Scholar 

  56. Pei Z, Yin J, Hawk JA, Alman DE, Gao MC. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. npj Comput. Mater. 2020; 6(1):1.

  57. Zhu JM, Meng JL, Liang JL. Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCux alloy. Rare Met. 2016;35(5):385.

    Article  CAS  Google Scholar 

  58. Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2019;38(12):1153.

    Article  CAS  Google Scholar 

  59. Yeh JW. Recent progress in high entropy alloys. Ann Chim Sci Mat. 2006;31(6):633.

    Article  CAS  Google Scholar 

  60. Yeh JW. Physical metallurgy of high-entropy alloys. JOM. 2015;67(10):2254.

    Article  CAS  Google Scholar 

  61. He QF, Tang PH, Chen HA, Lan S, Wang JG, Luan JH, Du M, Liu Y, Liu CT, Pao CW, Yang Y. Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys. Acta Mater. 2021; 216:117140.

  62. Tsai MH. Three strategies for the design of advanced high-entropy alloys. Entropy. 2016;18(7):252.

    Article  CAS  Google Scholar 

  63. Zhou N, Jiang S, Huang T, Qin M, Hu T, Luo J. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics. Sci Bull. 2019;64(12):856.

    Article  CAS  Google Scholar 

  64. Yao K, Liu L, Ren J, Guo Y, Liu Y, Cao Y, Feng R, Wu F, Qi J, Luo J, Liaw PK, Chen W. High-entropy intermetallic compound with ultra-high strength and thermal stability. Scr. Mater. 2021;194:113674.

  65. Wang J, Wu S, Fu S, Liu S, Ren Z, Yan M, Chen S, Lan S, Hahn H, Feng T. Nanocrystalline CoCrFeNiMn high-entropy alloy with tunable ferromagnetic properties. J Mater Sci Technol. 2021;77:126.

    Article  Google Scholar 

  66. Wang J, Wu S, Fu S, Liu S, Yan M, Lai Q, Lan S, Hahn H, Feng T. Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation. Scr Mater. 2020;187:335.

    Article  CAS  Google Scholar 

  67. Ren B, Zhao RF, Liu ZX, Guan SK, Zhang HS. Microstructure and properties of Al0.3CrFe1.5MnNi0.5Tix and Al0.3CrFe1.5MnNi0.5Six high-entropy alloys. Rare Met. 2014;33(2):149.

  68. Tsai MH, Tsai KY, Tsai CW, Lee C, Juan CC, Yeh JW. Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater Res Lett. 2013;1(4):207.

    Article  CAS  Google Scholar 

  69. Tsai MH, Chang KC, Li JH, Tsai RC, Cheng AH. A second criterion for sigma phase formation in high-entropy alloys. Mater Res Lett. 2016;4(2):90.

    Article  CAS  Google Scholar 

  70. Tsai MH, Fan AC, Wang HA. Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys. J Alloys Compd. 2017;695:1479.

    Article  CAS  Google Scholar 

  71. Yurchenko N, Stepanov N, Salishchev G. Laves-phase formation criterion for high-entropy alloys. Mater Sci Technol. 2016;33(1):17.

    Article  CAS  Google Scholar 

  72. Meng YH, Duan FH, Pan J, Li Y. Phase stability of B2-ordered ZrTiHfCuNiFe high entropy alloy. Intermetallics. 2019;111:106515.

  73. Müller F, Gorr B, Christ HJ, Chen H, Kauffmann A, Laube S, Heilmaier M. Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and TaMoCrTiAl: thermodynamic assessment and experimental validation. J. Alloys Compd. 2020;842:155726.

  74. Stolze K, Tao J, von Rohr FO, Kong T, Cava RJ. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem Mater. 2018;30(3):906.

    Article  CAS  Google Scholar 

  75. Firstov GS, Kosorukova TA, Koval YN, Odnosum VV. High entropy shape memory alloys. Mater Today: Proc. 2015;2:S499.

    Google Scholar 

  76. He QF, Ye YF, Yang Y. The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys. J Appl Phys. (2016);120(15): 154902.

  77. He QF, Ding ZY, Ye YF, Yang Y. Design of high-entropy alloy: a perspective from nonideal mixing. JOM. 2017;69(11):2092.

    Article  CAS  Google Scholar 

  78. Ford I. Statistical Physics: an entropic approach. New York: Wiley. 2013. 119.

    Book  Google Scholar 

  79. Wales D. Energy landscapes: Applications to clusters, biomolecules and glasses. Cambridge: Cambridge University Press. 2004. 592.

  80. Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ. A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics. 2016;71:76.

    Article  CAS  Google Scholar 

  81. Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Comput. Mater. 2019; 5(1):1.

  82. Nesper R. The Zintl-Klemm concept—a historical survey. Z Anorg Allg Chem. 2014;640(14):2639.

    Article  CAS  Google Scholar 

  83. Pearson W. The geometrical factor in the crystal chemistry of metals: near-neighbour diagrams. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. (1968); 24(11):1415.

  84. Parthé E. Space filling of crystal structures A contribution to the graphical presentation of geometrical relationships in simple crystal structures. Z Kristallogr Cryst Mater. 1961;115(1):52.

    Google Scholar 

  85. Frank FC, Kasper JS. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. (1958);11(3):184.

  86. Westgren A, Phragmén G. Gesetzmäßigkeiten im aufbau der legierungen Metallwirtschaft. 1928;7:700.

    CAS  Google Scholar 

  87. Massalski TB, Mizutani U. Electronic structure of Hume-Rothery phases. Prog Mater Sci. 1978;22(3):151.

    Article  CAS  Google Scholar 

  88. Mizutani U. Hume-Rothery rules for structurally complex alloy phases. Boca Raton: CRC Press. 2010. 5.

  89. Kauzlarich SM. Special issue: advances in Zintl phases. Materials. 2019;12(16):2554.

    Article  CAS  Google Scholar 

  90. Kauzlarich SM, Zevalkink A, Toberer E, Snyder GJ. Chapter 1: Zintl phases: recent developments in thermoelectrics and future outlook. Thermoelectric Materials and Devices (2016):1.

  91. Miller GJ, Schmidt MW, Wang F, You TS. Quantitative advances in the Zintl–Klemm formalism. In: Zintl Phases. Structure and bonding. Berlin: Springer; 2011. 1.

  92. Wang F. Rationalizing the Structures of Zintl and Polar Intermetallic Phases. Ann Arbor: Iowa State University. 2011. 148.

    Google Scholar 

  93. Frank FC, Kasper JS. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 1959;12(7):483.

  94. Sinha AK. Topologically close-packed structures of transition metal alloys. Prog Mater Sci. 1972;15(2):81.

    Article  Google Scholar 

  95. Joubert JM, Crivello JC. Non-stoichiometry and calphad modeling of Frank-Kasper phases. Appl Sci. 2012;2(3):669.

    Article  CAS  Google Scholar 

  96. Zhu JH, Liu CT, Pike LM, Liaw PK. A thermodynamic interpretation of the size-ratio limits for laves phase formation. Metall Mater Trans A. 1999;30(5):1449.

    Article  Google Scholar 

  97. Leitner G, Schulze GER. Crystal chemical stability conditions for intermetallic compounds (I) frequency distributions of laves-phases. Krist Tech. 1971;6(4):449.

    Article  CAS  Google Scholar 

  98. Li C, Zhao M, Li JC, Jiang Q. B2 structure of high-entropy alloys with addition of Al. J Appl Phys. (2008);104(11):113504.

  99. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448.

    Article  CAS  Google Scholar 

  100. Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis. Cambridge: Cambridge University Press. 2007. 441.

  101. Salvador JR, Shi X, Yang J, Wang H. Synthesis and transport properties of M3Ni3Sb4 (M= Zr and Hf): an intermetallic semiconductor. Phys. Rev. B. 2008;77(23):235217.

  102. Qiu S, Chen SM, Naihua M, Zhou J, Hu QM, Sun Z. Structural stability and mechanical properties of B2 ordered refractory AlNbTiVZr high entropy alloys. J. Alloys Compd. 2021;886:161289.

  103. Muralikrishna GM, Esther AC, Guruvidyathri K, Watermeyer P, Liebscher CH, Kulkarni KN, Wilde G, Divinski SV, Murty BS. Novel multicomponent B2-ordered aluminides: compositional design, synthesis, characterization, and thermal stability. Metals. 2020;10(11):1411.

    Article  CAS  Google Scholar 

  104. Yadav TP, Mukhopadhyay S, Mishra SS, Mukhopadhyay NK, Srivastava ON. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti–Zr–V–Cr–Ni equiatomic alloy. Philos Mag Lett. 2018;97(12):494.

    Article  CAS  Google Scholar 

  105. Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng. A. 2012;532:480.

  106. Chen J, Niu P, Liu Y, Lu Y, Wang X, Peng Y, Liu J. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater Des. 2016;94:39.

    Article  CAS  Google Scholar 

  107. Zhang KB, Fu ZY, Zhang JY, Wang WM, Wang H, Wang YC, Zhang QJ, Shi J. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. A (2009);508(1):214.

  108. Lee CF, Shun TT. Effect of Fe content on microstructure and mechanical properties of Al0.5CoCrFexNiTi0.5 high-entropy alloys. Mater. Charact. (2016);114:179.

  109. Juan CC, Hsu CY, Tsai CW, Wang WR, Sheu TS, Yeh JW, Chen SK. On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys. Intermetallics (2013);32:401.

  110. Hsu CY, Juan CC, Wang WR, Sheu TS, Yeh JW, Chen SK. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng. A. (2011);528(10):3581.

  111. Dong Y, Lu Y, Kong J, Zhang J, Li T. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J Alloys Compd. 2013;573:96.

    Article  CAS  Google Scholar 

  112. Manzoni AM, Daoud HM, Voelkl R, Glatzel U, Wanderka N. Influence of W, Mo and Ti trace elements on the phase separation in Al8Co17Cr17Cu8Fe17Ni33 based high entropy alloy. Ultramicroscopy. 2015;159:265.

    Article  CAS  Google Scholar 

  113. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011;59(1):182.

    Article  CAS  Google Scholar 

  114. Shun TT, Hung CH, Lee CF. Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J Alloys Compd. 2010;493(1):105.

    Article  CAS  Google Scholar 

  115. Wang Z, Wang X, Yue H, Shi G, Wang S. Microstructure, thermodynamics and compressive properties of AlCoCrCuMn-x (x=Fe, Ti) high-entropy alloys. Mater. Sci. Eng. A (2015);627:391.

  116. Lin CW, Tsai MH, Tsai CW, Yeh JW, Chen SK. Microstructure and aging behaviour of Al5Cr32Fe35Ni22Ti6 high entropy alloy. Mater Sci Technol. 2015;31(10):1165.

    Article  CAS  Google Scholar 

  117. He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014;62:105.

    Article  CAS  Google Scholar 

  118. Guo S, Ng C, Liu CT. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd. 2013;557:77.

    Article  CAS  Google Scholar 

  119. Baker I, Meng F, Wu M, Brandenberg A. Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy. J Alloys Compd. 2016;656:458.

    Article  CAS  Google Scholar 

  120. Wang Z, Wu M, Cai Z, Chen S, Baker I. Effect of Ti content on the microstructure and mechanical behavior of (Fe36Ni18Mn33Al13)100−xTix high entropy alloys. Intermetallics. 2016;75:79.

    Article  CAS  Google Scholar 

  121. Newhouse R, Minish J, Collins GS. Diffusion in binary and pseudo-binary L12 indides, stannides, gallides and aluminides of rare-earth elements as studied using perturbed angular correlation of 111In/Cd. In: Defect and Diffusion Forum. Trans Tech Publications Ltd. 2012. 447.

  122. Huang W, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 2019;169:225.

    Article  CAS  Google Scholar 

  123. Kaufmann K, Vecchio KS. Searching for high entropy alloys: a machine learning approach. Acta Mater. 2020;198:178.

    Article  CAS  Google Scholar 

  124. Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci. 2018;150:230.

    Article  CAS  Google Scholar 

  125. Zhao DQ, Pan SP, Zhang Y, Liaw PK, Qiao JW. Structure prediction in high-entropy alloys with machine learning. Appl. Phys. Lett. 2021;118(23):231904.

  126. Chen CH, Chen YJ, Shen JJ. Microstructure and mechanical properties of (TiZrHf)50(NiCoCu)50 high entropy alloys. Met Mater Int. 2020;26(5):617.

    Article  CAS  Google Scholar 

  127. Yu Y, Wang J, Li JS, Kou HC, Niu SZ, Zhu SY, Yang J, Liu WM. Dry-sliding tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy. Rare Met. 2017. https://doi.org/10.1007/s12598-016-0815-3.

  128. Tseng KK, Juan CC, Tso S, Chen HC, Tsai CW, Yeh JW. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys. Entropy. 2019;21(1):15.

    Article  CAS  Google Scholar 

  129. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):695.

    Article  CAS  Google Scholar 

  130. Senkov ON, Woodward C, Miracle DB. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM. 2014;66(10):2030.

    Article  CAS  Google Scholar 

  131. Stepanov ND, Shaysultanov DG, Salishchev GA, Tikhonovsky MA. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett. 2015;142:153.

    Article  CAS  Google Scholar 

  132. Wang XR, He P, Lin TS, Wang ZQ. Microstructure, thermodynamics and compressive properties of AlCrCuNixTi (x = 0, 1) high entropy alloys. Mater Sci Technol. 2015;31(15):1842.

    Article  CAS  Google Scholar 

  133. Guo J, Huang X, Huang W. Microstructure and room-temperature mechanical properties of FeCrMoVTix high-entropy alloys. J Mater Eng Perform. 2017;26(7):3071.

    Article  CAS  Google Scholar 

  134. Yao H, Qiao JW, Gao MC, Hawk JA, Ma SG, Zhou H. MoNbTaV medium-entropy alloy. Entropy. 2016;18(5):189.

    Article  CAS  Google Scholar 

  135. Yao HW, Qiao JW, Gao MC, Hawk JA, Ma SG, Zhou HF, Zhang Y. NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling. Mater. Sci. Eng. A. 2016;674:203.

  136. Yao HW, Qiao JW, Hawk JA, Zhou HF, Chen MW, Gao MC. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloys Compd. 2017;696:1139.

    Article  CAS  Google Scholar 

  137. Yang T, Zhao Y, Li W, Yu C, Luan J, Lin D, Fan L, Jiao Z, Liu W, Liu XJS. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science. 2020;369(6502):427.

    Article  CAS  Google Scholar 

  138. Wee S, Do J, Kim K, Lee C, Seok C, Choi BG, Choi Y, Kim W. Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines. Appl Sci. 2020;10(16):5476.

    Article  CAS  Google Scholar 

  139. Liu CT, Zhu JH, Brady MP, McKamey CG, Pike LM. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys. Intermetallics. 2000;8(9):1119.

    Article  CAS  Google Scholar 

  140. Ding ZY, He QF, Wang Q, Yang Y. Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int J Plast. 2018;106:57.

    Article  CAS  Google Scholar 

  141. Ding ZY, He QF, Chung D, Yang Y. Evading brittle fracture in submicron-sized high entropy intermetallics in dual-phase eutectic microstructure. Scr Mater. 2020;187:280.

    Article  CAS  Google Scholar 

  142. Chung D, Ding Z, Yang Y. Hierarchical eutectic structure enabling superior fracture toughness and superb strength in CoCrFeNiNb0.5 eutectic high entropy alloy at room temperature. Adv. Eng. Mater. 2019;21(3):1801060.

  143. Chung DH, Liu XD, Yang Y. Fracture of sigma phase containing Co–Cr–Ni–Mo medium entropy alloys. J. Alloys Compd. 2020;846:156189.

  144. Thoma DJ, Chu F, Peralta P, Kotula PG, Chen KC, Mitchell TE. Elastic and mechanical properties of Nb(Cr,V)2 C15 Laves phases. Mater. Sci. Eng. A (1997);239: 251.

  145. Li K, Li S, Xue Y, Fu H. Microstructure characterization and mechanical properties of a Laves-phase alloy based on Cr2Nb. Int J Refract Met Hard Mater. 2013;36:154.

    Article  CAS  Google Scholar 

  146. Xue YL, Li SM, Zhong H, Fu HZ. Characterization of fracture toughness and toughening mechanisms in Laves phase Cr2Nb based alloys. Mater. Sci. Eng., A (2015); 638:340.

  147. Chen KC, Allen SM, Livingston JD. Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys. Mater. Sci. Eng., A. (1998); 242(1):162.

  148. Chen KC, Allen SM, Livingston JD. Stoichiometry and alloying effects on the phase stability and mechanical properties of TiCr2-base Laves phase alloys. MRS Proc. 1994;364:1401.

    Article  Google Scholar 

  149. Maity T, Dutta A, Jana PP, Prashanth KG, Eckert J, Das J. Influence of Nb on the microstructure and fracture toughness of (Zr0.76Fe0.24)100−xNbx nano-eutectic composites. Materials. 2018;11(1):113.

  150. Dogan B, Schwalbe KH. Fracture toughness testing of TiAl base intermetallic alloys. Eng Fract Mech. 1997;56(2):155.

    Article  Google Scholar 

  151. Campbell JP, Ritchie RO, Venkateswara Rao KT. The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics. Metall Mater Trans A. 1999;30(3):563.

    Article  Google Scholar 

  152. Liu CT, Schneibel JH, Maziasz PJ, Wright JL, Easton DS. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics. 1996;4(6):429.

    Article  CAS  Google Scholar 

  153. Johnson DR, Chen XF, Oliver BF, Noebe RD, Whittenberger JD. Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl(Cr, Mo) eutectic systems. Intermetallics. 1995;3(2):99.

    Article  CAS  Google Scholar 

  154. He Q, Yang Y. On lattice distortion in high entropy alloys. Front Mater. 2018;5:42.

    Article  Google Scholar 

  155. Pan Q, Zhang L, Feng R, Lu Q, An K, Chuang Andrew C, Poplawsky Jonathan D, Liaw Peter K, Lu L. Gradient-cell–structured high-entropy alloy with exceptional strength and ductility. Science. 2021;374(6570):984.

    Article  CAS  Google Scholar 

  156. Li QJ, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat Commun. 2019;10(1):1.

    CAS  Google Scholar 

  157. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511.

    Article  CAS  Google Scholar 

  158. Chen CH, Chen YJ. Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scr Mater. 2019;162:185.

    Article  CAS  Google Scholar 

  159. Poole CP, Farach HA. Tabulations and correlations of transition temperatures of classical superconductors. J Supercond. 2000;13(1):47.

    Article  CAS  Google Scholar 

  160. Matthias BT, Corenzwit E, Vandenberg JM, Barz H, Maple MB, Shelton RN. Obstacles to superconductivity in CsCl phases. J Less-Common Met. 1976;46(2):339.

    Article  CAS  Google Scholar 

  161. Ding Z, Bian J, Shuang S, Liu X, Hu Y, Sun C, Yang Y. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv Sustain Syst. 2020;4(5):1900105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the General Research Fund (GRF) from Research Grant Council, the Hong Kong Government (Nos. CityU11213118 and CityU11200719) and the fund from City University of Hong Kong (No. 7005438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., He, QF. & Yang, Y. High-entropy intermetallics: from alloy design to structural and functional properties. Rare Met. 41, 1989–2001 (2022). https://doi.org/10.1007/s12598-021-01926-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01926-7

Keywords

Navigation