Skip to main content
Log in

The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ambient-temperature fracture toughness and fatigue crack propagation behavior are investigated in a wide range of (γ+α 2) TiAl microstructures, including single-phase γ, duplex, coarse lamellar (1 to 2 mm colony size (D) and 2.0 µm lamellar spacing (λ)), fine lamellar (D ∼ 150 µm, λ=1.3 to 2.0 µm), and a powder metallurgy (P/M) lamellar microstructure (D=65 µm, λ=0.2 µm). The influences of colony size, lamellar spacing, and volume fraction of equiaxed γ grains are analyzed in terms of their effects on resistance to the growth of large (>5 mm) cracks. Specifically, coarse lamellar microstructures are found to exhibit the best cyclic and monotonic crack-growth properties, while duplex and single-phase γ microstructures exhibit the worst, trends which are rationalized in terms of the salient micromechanisms affecting growth. These mechanisms primarily involve cracktip shielding processes and include crack closure and uncracked ligament bridging. However, since the potency of these mechanisms is severely restricted for cracks with limited wake, in the presence of small (<300 µm) cracks, the distinction in the fatigue crack growth resistance of the lamellar and duplex microstructures becomes far less significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.W. Kim: JOM, 1994, vol. 46 (7), pp. 30–40.

    CAS  Google Scholar 

  2. Y.-W. Kim and D.M. Dimiduk: JOM, 1991, vol. 43 (8), p. 40.

    CAS  Google Scholar 

  3. J.M. Larsen, B.D. Worth, S.J. Balsone, and J.W. Jones: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 821–34.

    Google Scholar 

  4. G.F. Harrison and M.R. Winstone: in Mechanical Behavior of Materials at High Temperature, C. Moura Branco, R.O. Ritchie, and V. Sklenicka, eds., Kluwer Academic Publishers, NATO ASI Series, 1996, pp. 309–25.

  5. H.E. Dève, A.G. Evans, and D.S. Shih: Acta Metall. Mater., 1992, vol. 40, pp. 1259–65.

    Article  Google Scholar 

  6. K.T. Venkateswara Rao, Y.-W. Kim, C.L. Muhlstein, and R.O. Ritchie: Mater. Sci. Eng., 1995, vol. A192, pp. 474–82.

    Google Scholar 

  7. S.J. Balsone, J.M. Larsen, D.C. Maxwell, and J.W. Jones: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 457–64.

    Google Scholar 

  8. K.S. Chan and Y.-W. Kim: Metall. Trans. A, 1992, vol. 23A, pp. 1663–77.

    CAS  Google Scholar 

  9. K.S. Chan: Metall. Trans. A, 1993, vol. 24A, pp. 569–83.

    CAS  Google Scholar 

  10. K.S. Chan and Y.-W. Kim: Metall. Trans. A, 1993, vol. 24A, pp. 113–25.

    CAS  Google Scholar 

  11. K.T. Venkateswara Rao, Y.-W. Kim, and R.O. Ritchie: Scripta Metall. Mater., 1995, vol. 33, pp. 459–65.

    Article  CAS  Google Scholar 

  12. D.L. Davidson and J.B. Campbell: Metall. Trans. A, 1993, vol. 24A, pp. 1555–74.

    CAS  Google Scholar 

  13. R. Gnanamoorthy, Y. Mutoh, K. Hayashi, and Y. Mizuhara: Scripta Metall. Mater., 1995, vol. 33 (6), pp. 907–12.

    Article  CAS  Google Scholar 

  14. C.T. Liu, P.J. Maziasz, D.R. Clemens, J.H. Schneibel, V.K. Sikka, T.G. Nieh, J. Wright, and L.R. Walker: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 679–88.

    Google Scholar 

  15. K. Maruyama, R. Yamamoto, H. Nakakuchi, and N. Fujitsuna: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 419–28.

    Google Scholar 

  16. Y.Q. Sun: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 131–36.

    Google Scholar 

  17. H. Umeda, K. Kishida, H. Inui, and M. Yamaguchi: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 336–43.

    Google Scholar 

  18. J.P. Campbell, A.L. McKelvey, S. Lillibridge, K.T. Venkateswara Rao, and R.O. Ritchie: in Deformation and Fracture of Ordered Intermetallic Materials III, W.O. Soboyejo, T.S. Srivatsan, and H.L. Fraser, eds., TMS, Warrendale, PA, 1996, pp. 141–57.

    Google Scholar 

  19. G. Malakondaiah and T. Nicholas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2239–51.

    CAS  Google Scholar 

  20. H. Baiyun, H. Yuehui, Z. Kechao, Q. Xuanhui, and C. Xiaoqun: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 709–12.

    Google Scholar 

  21. K. Ichikawa and Y. Kinoshita: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 493–502.

    Google Scholar 

  22. T.K. Lee, E.I. Mosunov, and S.K. Hwang: Mater. Sci. Eng., 1997, vols. A239–A240, pp. 540–45.

    Google Scholar 

  23. K.S. Kumar, J.A.S. Green, J.D.E. Larsen, and L.D. Kramer: Adv. Mater. Proc., 1995, vol. 148 (4), pp. 35–38.

    Google Scholar 

  24. D.E. Larsen: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 345–53.

    Google Scholar 

  25. W. Elber: Eng. Fract. Mech., 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  26. R.O. Ritchie and W. Yu: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  27. R.O. Ritchie, W. Yu, and R.J. Bucci: Eng. Fract. Mech., 1989, vol. 32, pp. 361–77.

    Article  Google Scholar 

  28. W.F. Deans and C.E. Richards: J. Test. Eval., 1979, vol. 7, pp. 147–54.

    Article  CAS  Google Scholar 

  29. C.E. Richards and W.F. Deans: in The Measurement of Crack Length and Shape during Fracture and Fatigue, C.J. Beevers, ed., EMAS Ltd., Warley, United Kingdom, 1980, pp. 28–68.

    Google Scholar 

  30. D.C. Maxwell: Materials Laboratory, Air Force Wright Aeronautical Laboratories, Report No. AFWAL-TR-87-4046, Wright-Patterson Air Force Base, Dayton, OH, 1987.

    Google Scholar 

  31. J.C. Newman and I.S. Raju: Eng. Fract. Mech., 1981, vol. 15, pp. 185–92.

    Article  Google Scholar 

  32. K.T. Venkateswara Rao, G.R. Odette, and R.O. Ritchie: Acta Metall. Mater., 1994, vol. 42, pp. 893–911.

    Article  Google Scholar 

  33. K.S. Chan: Metall. Trans. A, 1991, vol. 22A, pp. 2021–29.

    CAS  Google Scholar 

  34. K.S. Chan: Metall. Trans. A, 1995, vol. 26A, pp. 1407–18.

    CAS  Google Scholar 

  35. K.S. Chan: JOM, 1992, vol. 44 (5), pp. 30–48.

    CAS  Google Scholar 

  36. K.S. Chan and Y.-W. Kim: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1217–28.

    CAS  Google Scholar 

  37. H.E. Dève and A.G. Evans: Acta Metall. Mater., 1991, vol. 39 (6), pp. 1171–76.

    Article  Google Scholar 

  38. N.J. Rogers and P. Bowen: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 231–40.

    Google Scholar 

  39. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton: Intermetallics, 1996, vol. 4, pp. 429–40.

    Article  CAS  Google Scholar 

  40. M.G. Jenkins, A.S. Kobayashi, K.W. White, and R.C. Bradt: Int. J. Fract., 1987, vol. 34, pp. 281–95.

    Article  Google Scholar 

  41. K.S. Chan and Y.-W. Kim: Acta Metall. Mater., 1995, vol. 43, pp. 439–51.

    Article  CAS  Google Scholar 

  42. K.S. Chan: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 875–82.

    Google Scholar 

  43. S.L. Kampe, P. Sadler, D.E. Larsen, and L. Christodoulou: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 313–22.

    Google Scholar 

  44. A.G. Evans: J. Am. Ceram. Soc., 1990, vol. 73, pp. 187–206.

    Article  CAS  Google Scholar 

  45. R.O. Ritchie: Mater. Sci. Eng., 1988, vol. A103, pp. 15–28.

    CAS  Google Scholar 

  46. K. Badrinarayanan, A.L. McKelvey, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3781–92.

    Article  CAS  Google Scholar 

  47. D.R. Bloyer, K.T. Venkateswara Rao, and R.O. Ritchie: in Layered Materials for Structural Applications, J.J. Lewandowski, C.H. Ward, M.R. Jackson, and J.W.H. Hunt, eds., MRS, Pittsburgh, PA, 1996, pp. 243–48.

    Google Scholar 

  48. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 79–90.

    CAS  Google Scholar 

  49. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 73–87.

    CAS  Google Scholar 

  50. D.J. Wissuchek, G.E. Lucas, and A.G. Evans: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale PA, 1995, pp. 875–82.

    Google Scholar 

  51. S. Suresh: Metall. Trans. A, 1985, vol. 16A, pp. 249–60.

    CAS  Google Scholar 

  52. C.J. Gilbert, R.H. Dauskardt, and R.O. Ritchie: J. Am. Ceram. Soc., 1995, vol. 78, pp. 2291–2300.

    Article  CAS  Google Scholar 

  53. J.P. Campbell, J.J. Kruzic, S. Lillibridge, K.T. Venkateswara Rao, and R.O. Ritchie: Scripta Mater., 1997, vol. 37, p. 707.

    Article  CAS  Google Scholar 

  54. S. Suresh and R.O. Ritchie: Int. Met. Rev., 1984, vol. 29, pp. 445–76.

    Google Scholar 

  55. R.O. Ritchie and J. Lankford: Mater. Sci. Eng., 1986, vol. A84, pp. 11–16.

    Google Scholar 

  56. R.H. Dauskardt, M.R. James, J.R. Porter, and R.O. Ritchie: J. Am. Ceram. Soc., 1992, vol. 75, pp. 759–71.

    Article  CAS  Google Scholar 

  57. R.H. Dauskardt, R.O. Ritchie, J.K. Takemoto, and A.M. Brendzel: J. Biomedical Mater. Res., 1994, vol. 28, pp. 791–804.

    Article  CAS  Google Scholar 

  58. A.A. Steffen, R.H. Dauskardt, and R.O. Ritchie: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1259–68.

    Article  CAS  Google Scholar 

  59. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie: Eng. Fract. Mech., 1988, vol. 31, pp. 623–35.

    Article  Google Scholar 

  60. P. Bowen, R.A. Chave, and A.W. James: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 443–56.

    Google Scholar 

  61. P. Bowen, N.J. Rogers, and A.W. James: in Gamma Titanium Alumindes, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 849–65.

    Google Scholar 

  62. J.J. Kruzic: Master’s. Thesis, University of California at Berkeley, Berkeley, CA, May 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, J.P., Ritchie, R.O. & Venkateswara Rao, K.T. The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics. Metall Mater Trans A 30, 563–577 (1999). https://doi.org/10.1007/s11661-999-0048-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0048-2

Keywords

Navigation