Skip to main content
Log in

Synthesis of novel hydrated ferric oxide biochar nanohybrids for efficient arsenic removal from wastewater

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hydrated ferric oxide (HFO) has high adsorption efficiency for As(III). However, its high self-aggregation usually reduces the efficiency and limits the scaled-up application. Herein, biochar (BC), with large surface area and amounts of surface functional groups was used to tune the loading and distribution of HFO to prepare an efficient adsorbent (HFO/BC) via in-situ synthesis method. The influence of the mass ratio of iron salt to BC on HFO/BC morphology was investigated, and the mechanism was discussed. The results showed that novel HFO was formed and distributed uniformly on the surface of BC when the mass ratio of iron salt to BC was 5:1. The adsorption kinetics and isotherms studies show that the novel HFO/BC (5:1) composite can fast treat As(III) with a high adsorption capacity of 104.55 mg·g−1, indicating that it is a potential material for removing arsenic from polluted water.

Graphic abstract

摘要

水合氧化铁 (HFO) 对 As(III) 具有高吸附效率。然而, 其高度的自聚集性通常会降低效率并限制其大规模的应用。在此, 通过原位合成的方法, 以具有大表面积和大量表面官能团的生物炭(BC)来调节HFO的负载和分布制备了HFO/BC高效吸附剂。研究了铁盐与BC的质量比对HFO/BC形貌的影响, 并讨论了机理。 结果表明, 当铁盐与BC的质量比为5:1时, 在BC表面形成并均匀分布的新型HFO。吸附动力学和等温线研究表明, 新型HFO/BC (5:1) 复合材料可以快速吸附As(III), 吸附容量高达 104.55 mg·g−1, 表明它是一种潜在的从污水中去除砷的材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Song XL, Zhou L, Zhang Y, Chen P, Yang ZL. A novel cactus-like Fe3O4/Halloysite nanocomposite for arsenite and arsenate removal from water. J Cleaner Prod. 2019;224:573.

    Article  CAS  Google Scholar 

  2. Ministry of Health of the People’s Republic of China. Integrated Wastewater Discharge Standard. China Quality and Standards Publishing& Media Co., Ltd, Beijing. 1996;3.

  3. Wang ZW, Wang HC, Yang JB, Liu XP, Yue RR. Removal of heavy metal complex pollutants in water by adsorption. Chin J Rare Met. 2020;44(1):87.

    Google Scholar 

  4. Shaikh WA, Alam MA, Alam MO. Enhanced aqueous phase arsenic removal by iron nano bio-composite. Environ Technol Inno. 2020;19:100936.

  5. Pang JH, Liu Y, Li J, Yang XJ. Solvothermal synthesis of nano-CeO2 aggregates and its application as a high-efficient arsenic adsorbent. Rare Met. 2019;38(1):73.

    Article  CAS  Google Scholar 

  6. Davydiuk T, Chen XJ, Huang LJ, Shuai Q, Le XC. Removal of inorganic arsenic from water using metal organic frameworks. J Environ Sci. 2020;97(11):162.

    Article  Google Scholar 

  7. Kaartinen T, Laine-Ylijoki J, Ahoranta S, Korhonen T, Neitola R. Arsenic removal from mine waters with sorption techniques. Mine Water Environ. 2017;36(2):199.

    Article  CAS  Google Scholar 

  8. Tong H, Zheng CJ, Li B, Swanner ED, Liu CS, Chen MJ, Xia YF, Liu YH, Ning ZP, Li FB, Feng XB. Microaerophilic oxidation of Fe(II) coupled with simultaneous carbon fixation and As(III) oxidation and sequestration in karstic paddy soil. Environ Sci Technol. 2021;55(6):3634.

    Article  CAS  Google Scholar 

  9. Gubler R, ThomasArrigo LK. Ferrous iron enhances arsenic sorption and oxidation by non-stoichiometric magnetite and maghemite. J. Hazard. Mater. 2021;402(15): 123425.

  10. Giles DE, Mohapatra M, Issa TB, Anand S, Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manage. 2011;92(12):3011.

    Article  CAS  Google Scholar 

  11. Qi PF, Pichler T. Competitive adsorption of As (III), As (V), Sb (III) and Sb (V) onto ferrihydrite in multi-component systems: implications for mobility and distribution. J Hazard Mater. 2017;330:142.

    Article  CAS  Google Scholar 

  12. Dai C, Hu Y. Fe (III) hydroxide nucleation and growth on quartz in the presence of Cu (II), Pb (II), and Cr (III): metal hydrolysis and adsorption. Environ Sci Technol. 2015;49(3):292.

    Article  CAS  Google Scholar 

  13. Hiemstra T. Formation, stability, and solubility of metal oxide nanoparticles: surface entropy, enthalpy, and free energy of ferrihydrite. Geochim Cosmochim Acta. 2015;158:179.

    Article  CAS  Google Scholar 

  14. Zhang YY, Pan BC. Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chem Eng J. 2014;249:111.

    Article  CAS  Google Scholar 

  15. Maity JP, Chen CY, Bhattacharya P, Sharma RK, Ahmad A, Patnaik S, Bundschuh J. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. J Hazard Mater. 2021;405(1):19.

    Google Scholar 

  16. Qiu H, Ni W, Zhang H, Chen K, Yu J. Fabrication and evaluation of a regenerable HFO-doped agricultural waste for enhanced adsorption affinity towards phosphate. Sci. Total Environ. 2020;703:135493.

  17. Qambrani NA, Rahman MM, Won S, Shim S, Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renewable Sustainable Energy Rev. 2017;79:255.

    Article  CAS  Google Scholar 

  18. Nworie FS, Nwabue FI, Oti W, Omaka NO, Igwe H. Hydrothermal synthesis of multifunctional Biochar-supported SALEN nanocomposite for adsorption of Cd(II) ions: function, mechanism, equilibrium and kinetic studies. Anal Bioanal Chem Res. 2021;8(1):91.

    CAS  Google Scholar 

  19. Yang F, Zhang SS, Cho DW, Du Q, Song JP, Tsang DCW. Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal. J Alloys Compd. 2019;272:415.

    CAS  Google Scholar 

  20. Song XL, Zhang Y, Luo XD, Chen P, Liu JL. 2D magnetic scallion sheathing-based biochar composites design and application for effective removal of arsenite in aqueous solutions. Chem Eng Res Des. 2019;152:384.

    Article  CAS  Google Scholar 

  21. Venkateswarlu S, Lee D, Yoon M. Bioinspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal. ACS Appl Mater Interfaces. 2016;8(36):23876.

    Article  CAS  Google Scholar 

  22. Yan Y, Tang X, Ma CC, Huang H, Yu KS, Liu Y, Lu ZY, Li CX, Zhu Z, Huo PW. A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity. New J Chem. 2020;44(1):79.

    Article  CAS  Google Scholar 

  23. Lu L, Yu WT, Wang YF, Zhang K, Zhu XM, Zhang YC, Wu YJ, Ullah H, Xiao X, Chen BL. Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices. Biochar. 2020;2(1):1.

    Article  Google Scholar 

  24. Luo H, Wang XY, Dai R, Liu Y, Jiang X, Xiong XL, Huang K. Simultaneous determination of arsenic and cadmium by hydride generation atomic fluorescence spectrometry using magnetic zero-valent iron nanoparticles for separation and pre-concentration. Microchem J. 2017;133:518.

    Article  CAS  Google Scholar 

  25. Tian N, Tian X, Ma L, Yang C, Wang Y, Wang Z, Zhang L. Well-dispersed magnetic iron oxide nanocrystals on sepiolite nanofibers for arsenic removal. RSC Adv. 2015;5(32):25236.

    Article  CAS  Google Scholar 

  26. Tian N, Tian X, Liu X, Zhou Z, Yang C, Ma L, Tian C, Li Y, Wang Y. Facile synthesis of hierarchical dendrite-like structure iron layered double hydroxide nanohybrids for effective arsenic removal. Chem Commun. 2016;52(80):11955.

    Article  CAS  Google Scholar 

  27. Xie DH, Ma Y, Gu Y, Zhou HJ, Zhang HM, Wang GZ, Zhang YX, Zhao HJ. Bifunctional NH2-MIL-88(Fe) metal-organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J Mater Chem A. 2017;5(45):23794.

    Article  CAS  Google Scholar 

  28. Saha I, Gupta K, Chakraborty S, Chatterjee D, Ghosh UC. Synthesis, characterization and As (III) adsorption behavior of b-cyclodextrin modified hydrous ferric oxide. J Ind Eng Chem. 2014;20(4):1741.

    Article  CAS  Google Scholar 

  29. Do XH, Lee BK. Removal of Pb2+ using a biochar-alginate capsule in aqueous solution and capsule regeneration. J Environ Manage. 2013;131:375.

    Article  CAS  Google Scholar 

  30. Wang YH, Morin G, Ona-Nguema G, Juillot F, Guyot F, Calas G, Brown GE. Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES study. Environ Sci Technol. 2010;44(1):109.

    Article  CAS  Google Scholar 

  31. Kumari V, Bhaumik A. Mesoporous ZnAl2O4: an efficient adsorbent for the removal of arsenic from contaminated water. Dalton Trans. 2015;44(26):11843.

    Article  CAS  Google Scholar 

  32. Wielant J, Hauffman T, Blajiev O, Hausbrand R, Terryn H. Influence of the iron oxide acid-base properties on the chemisorption of model epoxy compounds studied by XPS. J Phys Chem C. 2007;111(35):13177.

    Article  CAS  Google Scholar 

  33. Lim SF, Zheng YM, Chen JP. Organic arsenic adsorption onto a magnetic sorbent. Langmuir. 2009;25(9):4973.

    Article  CAS  Google Scholar 

  34. Wang T, Zhang L, Wang H, Yang W, Fu Y, Zhou W, Yu W, Xiang K, Su Z, Dai S, Chai L. Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly(diallyldimethylammonium chloride) and their application in arsenic removal. ACS Appl Mater Interfaces. 2013;5(23):12449.

    Article  CAS  Google Scholar 

  35. Cao CY, Qu J, Yan WS, Zhu JF, Wu ZY, Song WG. Low-cost synthesis of flowerlike alpha-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir. 2012;28(9):4573.

    Article  CAS  Google Scholar 

  36. Ding M, Jong BHWSD, Roosendaal SJ, Vredenberg A. XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb2+ , and Zn2+ ions on amorphous black ferric oxyhydroxide. Geochim. Cosmochim. Acta. 2000;64(7):1209.

  37. Manceau A. The mechanism of anion adsorption on iron oxides: evidence for the bonding of arsenate tetrahedra on free Fe(OOH)6 edges. Geochim Cosmochim Acta. 1995;59(17):3647.

    Article  CAS  Google Scholar 

  38. Zhang TS, Wang J, Zhang WT, Yang CY, Zhang L, Zhu WX, Sun J, Li GL, Li T, Wang JL. Amorphous Fe/Mn bimetal organic frameworks: outer and inner structural designs for efficient arsenic (III) removal. J Mater Chem A. 2019;7(6):2845.

    Article  CAS  Google Scholar 

  39. Lin L, Song ZG, Khan ZH, Liu XW, Qiu WW. Enhanced As(III) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites. Sci Total Environ. 2019;686:1185.

    Article  CAS  Google Scholar 

  40. Zhu SH, Zhao JH, Yin YJ, Shang JY, Chen C, Qu T. Application of goethite modified biochar for arsenic removal from aqueous solution. Huanjing Kexue. 2019;40(6):2773.

    Google Scholar 

  41. Huo JB, Xu L, Yang JCE, Cui HJ, Yuan BL, Fu ML. Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water. Colloids Surf., A. 2018;539:59.

  42. Liu XW, Gao ML, Qiu WW, Khan ZH, Liu NB, Lin L, Song ZG. Fe-Mn-Ce oxide-modified biochar composites as efficient adsorbents for removing As(III) from water: adsorption performance and mechanisms. Environ Sci Pollut Res. 2019;26(17):17373.

    Article  CAS  Google Scholar 

  43. Nasir AM, Nordin NAHM, Goh PS, Ismail AF. Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF-L) as arsenite adsorbent: kinetic, isotherm and mechanism. J Mol Liq. 2018;250:269.

    Article  CAS  Google Scholar 

  44. Ashour RM, Abdel-Magied AF, Wu Q, Olsson RT, Forsberg K. Green synthesis of metal-organic framework bacterial cellulose nanocomposites for separation applications. Polymers. 2020;12(5):1104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 52173208), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Qing Lan Project of Yangzhou University (Dr. LJL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Liang Liu or Xiao-Li Song.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Zhang, Y., Chen, Y. et al. Synthesis of novel hydrated ferric oxide biochar nanohybrids for efficient arsenic removal from wastewater. Rare Met. 41, 1677–1687 (2022). https://doi.org/10.1007/s12598-021-01920-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01920-z

Keywords

Navigation