Skip to main content

Advertisement

Log in

Antimicrobial and antifouling surfaces through polydopamine bio-inspired coating

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The increasing antibiotic treatment failure is attributed to the increasing emergence of drug-resistant bacteria, and the attachment of these bacteria to the surface of implantation materials often leads to dangerous bacterial biofilm formation on the implant surface. Thus, this creates an urgent need to develop new antibacterial material and antifouling implants. Polydopamine (PDA), as a mussel-inspired material, has many advantageous properties, such as a simple preparation procedure, excellent hydrophilicity and biocompatibility, strong adhesive performance, easy functionalization, outstanding photothermal conversion effect, and strong quenching effect. PDA has increasingly attracted much interest not only for its adherence to virtually all types of surfaces but also as it provides a simple and versatile approach to functionalize material surfaces to obtain a variety of multifunctional nanomaterials. In this review, we mainly focus on the preparation and polymerization mechanism of PDA systems and then provide a compilation of several reports on the PDA surface modification of various nanomaterials and material surfaces, including metals, metal oxides, carbons, and polymers. Finally, we summarize the advantages and disadvantages of polydopamine surface-modified nanomaterials.

Graphical abstract

摘要

耐药菌的出现导致了抗生素治疗的失效, 这些细菌在植入材料表面的附着常导致细菌生物膜的形成, 因此, 迫切需要开发新型抗菌抗污植入物材料。作为一种受到贻贝启发的材料, 聚多巴胺 (PDA) 具有优异的性能, 如制备方法简单, 亲水性和生物相容性好, 粘附性强, 易修饰, 具有光热转化能力和强的淬灭效应等。PDA越来越受到关注不仅是因为它对几乎所有类型的表面都有粘附性, 也因为它提供了一种简单而通用的方法来修饰材料表面, 得到各种各样的功能化纳米材料。 在本综述中, 我们聚焦于PDA的制备机制, 提供有关于PDA改性的纳米材料和功能化表面, 包括金属, 金属氧化物, 碳材料和聚合物的若干文献汇总。 最后, 我们对PDA表面改性材料的优缺点加以总结。.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Reproduced with permission from Ref. [15]. Copyright 2015, Elsevier

Scheme 2
Fig. 1

Reproduced with permission from Ref. [73]. Copyright 2019, Elsevier

Fig. 2

Reproduced with permission from Ref. [3]. Copyright 2018, Wiley Online Library

Fig. 3

Reproduced with permission from Ref. [112]. Copyright 2019, Wiley Online Library.

Fig. 4

Reproduced with permission from Ref. [29]. Copyright 2017, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [139]. Copyright 2019, Wiley Online Library

Fig. 6

Reproduced with permission from Ref. [142]. Copyright 2019, American Chemical Society. f Coating process of the TiO2-PTFE on PDA-modified 316L SS; adhesion of g E. coli and h S. aureus to different samples at different time. Reproduced with permission from Ref. [144]. Copyright 2019, Elsevier

Fig. 7

Reproduced with permission from Ref. [155]. Copyright 2018, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [156]. Copyright 2019, Elsevier

Fig. 9

Reproduced with permission from Ref. [160]. Copyright 2019, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [168]. Copyright 2018, Wiley Online Library

Similar content being viewed by others

References

  1. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336.

    Article  CAS  Google Scholar 

  2. Yu SM, Li GW, Liu R, Ma D, Xue W. Dendritic Fe3O4@poly(dopamine)@PAMAM nanocomposite as controllable no-releasing material: a synergistic photothermal and no antibacterial study. Adv Funct Mater. 2018;28(20):1707440.

    Article  Google Scholar 

  3. Hickok NJ, Shapiro IM, Chen AF. The impact of incorporating antimicrobials into implant surfaces. J Dent Res. 2018;97(1):14.

    Article  CAS  Google Scholar 

  4. Liu R, Guo YL, Odusote G, Qu FL, Priestley RD. Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Appl Mater Interfaces. 2013;5(18):9167.

    Article  CAS  Google Scholar 

  5. Cheng W, Zeng XW, Chen HZ, Li ZM, Zeng WF, Mei L, Zhao YL. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano. 2019;13(8):8537.

    Article  CAS  Google Scholar 

  6. Fu Y, Yang L, Zhang JH, Hu JF, Duan GG, Liu XH, Li YW, Gu ZP. Polydopamine antibacterial materials. Mater Horizons. 2021;8(6):1618.

    Article  CAS  Google Scholar 

  7. Hu XY, Tian JH, Li C, Su H, Qin RR, Wang YF, Cao X, Yang P. Amyloid-like protein aggregates: a new class of bioinspired materials merging an interfacial anchor with antifouling. Adv Mater. 2020;32(23):2000128.

    Article  CAS  Google Scholar 

  8. Jiang JH, Zhu LP, Zhu LJ, Zhang HT, Zhu BK, Xu YY. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl Mater Interfaces. 2013;5(24):12895.

    Article  CAS  Google Scholar 

  9. Cong Y, Xia T, Zou M, Li ZN, Peng B, Guo DZ, Deng ZW. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/ag nanocomposite particles with enhanced antibacterial activities. J Mater Chem B. 2014;2(22):3450.

    Article  CAS  Google Scholar 

  10. Fu JW, Chen ZH, Wang MH, Liu SJ, Zhang JH, Zhang JN, Han RP, Xu Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J. 2015;259:53.

    Article  CAS  Google Scholar 

  11. Lee H, Dellatore SM, Miller MM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426.

    Article  CAS  Google Scholar 

  12. Ye Q, Zhou F, Liu WM. Bioinspired catecholic chemistry for surface modification. Chem Soc Rev. 2011;40(7):4244.

    Article  CAS  Google Scholar 

  13. Liu YL, Ai KL, Lu LH. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057.

    Article  CAS  Google Scholar 

  14. Lynge ME, Schattling P, Stadler B. Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine. 2015;10(17):2725.

    Article  CAS  Google Scholar 

  15. Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci. 2017;5(7):1204.

    Article  CAS  Google Scholar 

  16. Chen CT, Martin-Martinez FJ, Jung GS, Buehler MJ. Polydopamine and eumelanin molecular structures investigated with ab initio calculations. Chem Sci. 2017;8(2):1631.

    Article  CAS  Google Scholar 

  17. Mrówczyński R, Markiewicz R, Liebscher J. Chemistry of polydopamine analogues. Polym Int. 2016;65(11):1288.

    Article  Google Scholar 

  18. Batul R, Bhave M, Mahon PJ, Yu A. Polydopamine nanosphere with in-situ loaded gentamicin and its antimicrobial activity. Molecules. 2020;25(9):2090.

    Article  CAS  Google Scholar 

  19. Wu CJ, Zhang GX, Xia T, Li ZN, Zhao K, Deng ZW, Guo DZ, Peng B. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities. Mater Sci Eng C. 2015;55:155.

    Article  CAS  Google Scholar 

  20. Ran HH, Cheng XT, Gao G, Sun W, Jiang YW, Zhang XD, Jia HR, Qiao Y, Wu FG. Colistin-loaded polydopamine nanospheres uniformly decorated with silver nanodots: a nanohybrid platform with improved antibacterial and antibiofilm performance. ACS Appl Bio Mater. 2020;3(4):2438.

    Article  CAS  Google Scholar 

  21. Ma K, Dong P, Liang MJ, Yu SS, Chen YY, Wang F. Facile assembly of multifunctional antibacterial nanoplatform leveraging synergistic sensitization between silver nanostructure and vancomycin. ACS Appl Mater Interfaces. 2020;12(6):6955.

    Article  CAS  Google Scholar 

  22. Shang B, Xu M, Zhi ZL, Xi YW, Wang YB, Peng B, Li P, Deng ZW. Synthesis of sandwich-structured silver@polydopamine@silver shells with enhanced antibacterial activities. J Colloid Interface Sci. 2020;558:47.

    Article  Google Scholar 

  23. Wang Y, Su J, Li T, Ma PM, Bai HY, Xie Y, Chen MQ, Dong WF. A novel UV-shielding and transparent polymer film: when bioinspired dopamine-melanin hollow nanoparticles join polymers. ACS Appl Mater Interfaces. 2017;9(41):36281.

    Article  CAS  Google Scholar 

  24. Li J, Tan L, Liu XM, Cui ZD, Yang XJ, Yeung KWK, Chu PK, Wu S. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano. 2017;11(11):11250.

    Article  CAS  Google Scholar 

  25. Li LH, Yang L, Liao YB, Yu HC, Liang Z, Zhang B, Lan XR, Luo RF, Wang YB. Superhydrophilic versus normal polydopamine coating: a superior and robust platform for synergistic antibacterial and antithrombotic properties. Chem Eng J. 2020;402:126196.

    Article  CAS  Google Scholar 

  26. Xu YW, Ji YL, Ma JH. Hydrophobic and hydrophilic effects in a mussel-inspired citrate-based adhesive. Langmuir. 2021;37(1):311.

    Article  CAS  Google Scholar 

  27. Wonderly WR, Cristiani TR, Cunha KC, Degen GD, Shea JE, Waite JH. Dueling backbones: comparing peptoid and peptide analogues of a mussel adhesive protein. Macromolecules. 2020;53(16):6767.

    Article  CAS  Google Scholar 

  28. El Yakhlifi S, Alfieri M-L, Arntz Y, Eredia M, Ciesielski A, Samorì P, d’Ischia M, Ball V. Oxidant-dependent antioxidant activity of polydopamine films: The chemistry-morphology interplay. Colloids Surf Physicochem Eng Aspects. 2021;614:126134.

    Article  Google Scholar 

  29. Lee H, Scherer NF, Messersmith PB. Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A. 2006;103(35):12999.

    Article  CAS  Google Scholar 

  30. Priemel T, Palia R, Babych M, Thibodeaux CJ, Bourgault S, Harrington MJ. Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA. Proc Natl Acad Sci U S A. 2020;117(14):7613.

    Article  CAS  Google Scholar 

  31. Wang Z, Zou Y, Li YW, Cheng YY. Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small. 2020;16(18):1907042.

    Article  CAS  Google Scholar 

  32. Xi ZY, Xu YY, Zhu LP, Wang Y, Zhu BK. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J Membrane Sci. 2009;327(1–2):244.

    Article  CAS  Google Scholar 

  33. Ryu JH, Messersmith PB, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces. 2018;10(9):7523.

    Article  CAS  Google Scholar 

  34. Guo XJ, Cao B, Wang CY, Lu SY, Hu XL. In vivo photothermal inhibition of methicillin-resistant staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale. 2020;12(14):7651.

    Article  CAS  Google Scholar 

  35. Au KM, Lu Z, Matcher SJ, Armes SP. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv Mater. 2011;23(48):5792.

    Article  CAS  Google Scholar 

  36. Luo P, Wang SN, Zhao TT, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted niti alloy. Rare Met. 2013;32(2):113.

    Article  CAS  Google Scholar 

  37. Samanta A, Podder S, Kumarasamy M, Ghosh CK, Lahiri D, Roy P, Bhattacharjee S, Ghosh J, Mukhopadhyay AK. Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities. Mater Sci Eng C. 2019;103:109734.

    Article  CAS  Google Scholar 

  38. Li Y, Tian Y, Zheng WS, Feng Y, Huang R, Shao JX, Tang RB, Wang P, Jia YX, Zhang JJ, Zheng WF, Yang G, Jiang XY. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating Gram-negative bacteria-infected wounds. Small. 2017;13(27):1700130.

    Article  Google Scholar 

  39. Rajan A, Vilas V, Philip D. Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J Mol Liq. 2015;212:331.

    Article  CAS  Google Scholar 

  40. Kim JH, Joshi MK, Lee J, Park CH, Kim CS. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J Colloid Interface Sci. 2018;513:566.

    Article  CAS  Google Scholar 

  41. Islam MS, Akter N, Rahman MM, Shi C, Islam MT, Zeng H, Azam MS. Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain Chem Eng. 2018;6(7):9178.

    Article  CAS  Google Scholar 

  42. Wu HQ, Liu YJ, Huang J, Mao L, Chen JH, Li M. Preparation and characterization of antifouling and antibacterial polysulfone ultrafiltration membranes incorporated with a silver-polydopamine nanohybrid. J Appl Polym Sci. 2018;135(27):46430.

    Article  Google Scholar 

  43. Coelho D, Sampaio A, Silva C, Felgueiras HP, Amorim MTP, Zille A. Antibacterial electrospun poly(vinyl alcohol)/enzymatic synthesized poly(catechol) nanofibrous midlayer membrane for ultrafiltration. ACS Appl Mater Interfaces. 2017;9(38):33107.

    Article  CAS  Google Scholar 

  44. Zhang QM, Wang YL, Zhang WK, Hickey ME, Lin ZS, Tu Q, Wang JY. In situ assembly of well-dispersed Ag nanoparticles on the surface of polylactic acid-Au@polydopamine nanofibers for antimicrobial applications. Colloids Surf B. 2019;184:110506.

    Article  CAS  Google Scholar 

  45. Zhou ZW, Liu R. Fe3O4@polydopamine and derived Fe3O4@carbon core–shell nanoparticles: comparison in adsorption for cationic and anionic dyes. Colloid Surf A. 2017;522:260.

    Article  CAS  Google Scholar 

  46. Guo LQ, Liu Q, Li GL, Shi JB, Liu JY, Wang T, Jiang GB. A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale. 2012;4(19):5864.

    Article  CAS  Google Scholar 

  47. Ma R, Yang P, Ma Y, Bian F. Facile synthesis of magnetic hierarchical core-shell structured Fe3O4@PDA-Pd@MOF nanocomposites: highly integrated multifunctional catalysts. ChemCatChem. 2018;10(6):1446.

    Article  CAS  Google Scholar 

  48. Zhao FJ, Lei B, Li X, Mo YF, Wang RX, Chen DF, Chen XF. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 2018;178:36.

    Article  CAS  Google Scholar 

  49. Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1.

    Article  CAS  Google Scholar 

  50. Lei B, Guo BL, Rambhia KJ, Ma PX. Hybrid polymer biomaterials for bone tissue regeneration. Front Med. 2019;13(2):189.

    Article  Google Scholar 

  51. Han L, Liu KZ, Wang MH, Wang KF, Fang LM, Chen HT, Zhou J, Lu X. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater. 2018;28(3):1704195.

    Article  Google Scholar 

  52. Zhou L, Xi YW, Xue YM, Wang M, Liu YL, Guo Y, Lei B. Injectable self-healing antibacterial bioactive polypeptide-based hybrid nanosystems for efficiently treating multidrug resistant infection, skin-tumor therapy, and enhancing wound healing. Adv Funct Mater. 2019;29(22):1806883.

    Article  Google Scholar 

  53. Park JK, Kim YJ, Yeom J, Jeon JH, Yi GC, Je JH, Hahn SK. The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv Mater. 2010;22(43):4857.

    Article  CAS  Google Scholar 

  54. Wang ZL. ZnO nanowire and nanobelt platform for nanotechnology. Mater Sci Eng R Rep. 2009;64(3–4):33.

    Article  Google Scholar 

  55. Zaveri TD, Dolgova NV, Chu BH, Lee J, Wong J, Lele TP, Ren F, Keselowsky BG. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials. 2010;31(11):2999.

    Article  CAS  Google Scholar 

  56. Wang TT, Liu XM, Zhu YZ, Cui ZD, Yang XJ, Pan H, Yeung KWK, Wu SL. Metal ion coordination polymer-capped pH-triggered drug release system on titania nanotubes for enhancing self-antibacterial capability of Ti implants. ACS Biomater Sci Eng. 2017;3(5):816.

    Article  CAS  Google Scholar 

  57. Huang L, Liu MY, Huang HY, Wen YQ, Zhang XY, Wei Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromol. 2018;19(6):1858.

    Article  CAS  Google Scholar 

  58. Xiang YM, Mao CY, Liu XM, Cui ZD, Jing DD, Yang XJ, Liang YQ, Li ZY, Zhu SL, Zheng YF, Yeung KWK, Zheng D, Wang XB, Wu SL. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated pda hydrogel through dual-light triggered ros and membrane permeability. Small. 2019;15(22):1900322.

    Article  Google Scholar 

  59. Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H. Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromol. 2015;16(9):2541.

    Article  CAS  Google Scholar 

  60. Lee BS, Lin YC, Hsu WC, Hou CH, Shyue JJ, Hsiao SY, Wu PJ, Lee YT, Luo SC. Engineering antifouling and antibacterial stainless steel for orthodontic appliances through layer-by-layer deposition of nanocomposite coatings. ACS Appl Bio Mater. 2019;3(1):486.

    Article  Google Scholar 

  61. Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocompatible implant surfaces. Prog Mater Sci. 2013;58(3):261.

    Article  CAS  Google Scholar 

  62. Zhang S, Liang XJ, Gadd GM, Zhao Q. Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties. Appl Surf Sci. 2019;490:231.

    Article  CAS  Google Scholar 

  63. Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Katrin H, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S. Metal-specific biomaterial accumulation in human peri-implant bone and bone marrow. Adv Sci. 2020;7(20):2000412.

    Article  CAS  Google Scholar 

  64. Huang L, Su K, Zheng YF, Yeung KWK, Liu XM. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 2019;38(6):588.

    Article  CAS  Google Scholar 

  65. Huang YJ, Ding XK, Qi YK, Yu B, Xu FJ. Reduction-responsive multifunctional hyperbranched polyaminoglycosides with excellent antibacterial activity, biocompatibility and gene transfection capability. Biomaterials. 2016;106:134.

    Article  CAS  Google Scholar 

  66. Huang YS, Huang HH. Effects of clinical dental implant abutment materials and their surface characteristics on initial bacterial adhesion. Rare Met. 2019;38(6):512.

    Article  CAS  Google Scholar 

  67. Zeng Q, Zhu YW, Yu BR, Sun YJ, Ding XK, Xu C, Wu YW, Tang ZH, Xu FJ. Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromol. 2018;19(7):2805.

    Article  CAS  Google Scholar 

  68. Lee JS, Lee SJ, Yang SB, Lee D, Nah H, Heo DN, Moon HJ, Hwang YS, Reis RL, Moon JH, Kwon IK. Facile preparation of mussel-inspired antibiotic-decorated titanium surfaces with enhanced antibacterial activity for implant applications. Appl Surf Sci. 2019;496:143675.

    Article  CAS  Google Scholar 

  69. Wang C, Zhao W, Cao B, Wang Z, Zhou Q, Lu S, Lu L, Zhan M, Hu X. Biofilm-responsive polymeric nanoparticles with self-adaptive deep penetration for in vivo photothermal treatment of implant infection. Chem Mater. 2020;32(18):7725.

    Article  CAS  Google Scholar 

  70. Cao B, Lyu XM, Wang YC, Lu SY, Xing D, Hu XL. Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials. 2020;262:120341.

    Article  CAS  Google Scholar 

  71. Yu MM, Ding XJ, Zhu YW, Wu SM, Ding XK, Li Y, Yu BR, Xu FJ. Facile surface multi-functionalization of biomedical catheters with dual-microcrystalline broad-spectrum antibacterial drugs and antifouling poly(ethylene glycol) for effective inhibition of bacterial infections. ACS Appl Bio Mater. 2019;2(3):1348.

    Article  CAS  Google Scholar 

  72. Peng LY, Chang L, Liu X, Lin JX, Liu HL, Han B, Wang ST. Antibacterial property of a polyethylene glycol-grafted dental material. ACS Appl Mater Interfaces. 2017;9(21):17688.

    Article  CAS  Google Scholar 

  73. Xiao FF, Cao B, Wang CY, Guo XJ, Li MG, Xing D, Hu XL. Retraction of “pathogen-specific polymeric antimicrobials with significant membrane disruption and enhanced photodynamic damage to inhibit highly opportunistic bacteria.” ACS Nano. 2020;14(5):6357.

    Article  CAS  Google Scholar 

  74. Ho DH, Cheon S, Hong P, Park JH, Suk JW, Kim DH, Han JT, Cho JH. Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv Funct Mater. 2019;29(24):1900025.

    Article  Google Scholar 

  75. Zhu YW, Xu C, Zhang N, Ding XK, Yu BR, Xu FJ. Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-infective therapy. Adv Funct Mater. 2018;28(14):1706709.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21875014 and 52073013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju-Lin Wang or Bing-Ran Yu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YW., Sun, YJ., Wang, JL. et al. Antimicrobial and antifouling surfaces through polydopamine bio-inspired coating. Rare Met. 41, 499–518 (2022). https://doi.org/10.1007/s12598-021-01871-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01871-5

Keywords

Navigation