Skip to main content
Log in

Enhanced Thermoelectric Performance in Hf-Free p-Type (Ti, Zr)CoSb Half-Heusler Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High thermal conductivity and exorbitant cost of Hf has for a long time limited the prospects of half-Heusler (HH) alloys for applicability in thermoelectric (TE) energy conversion devices. This work demonstrates the implication of nanostructuring and efficacy of p-type acceptor dopant in (Ti,Zr)CoSb based HH alloys for enhancing the figure of merit (ZT) while eliminating the use of Hf. A series of (Ti,Zr)CoSb1−x(Si,Sn)x HH composition was synthesized using arc-melting and consolidated employing spark plasma sintering (SPS). The optimal doping of acceptor dopants, namely, Si and Sn significantly improves the power factor and strengthens the phonon scattering resulting in an enhanced TE performance with maximum ZT of 0.26 and 0.5 at 873 K, obtained for TiCoSb0.8Sn0.2 and ZrCoSb0.8Sn0.2, respectively. For further optimization, microstructural modifications by fine-tuning of the Ti to Zr ratio induces strain field effects and mass fluctuation in (Ti,Zr)CoSb0.8Sn0.2 compositions, which remarkably introduces additional phonon scattering resulting in maximum ZT ∼ 0.8 at 873 K for the best performing Zr0.5Ti0.5CoSb0.8Sn0.2 compound. The current study provides a better understanding of p-type dopants in HH materials by which prospective high TE performance can be obtained in low-cost Hf-free p-type (Ti,Zr)CoSb half-Heusler alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).

    Article  Google Scholar 

  2. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, M. Saravanan, and A. Dhar, J. Phys. Chem. Solids 123, 105 (2018).

    Article  Google Scholar 

  3. S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scripta Mater. 66, 1073 (2012).

    Article  Google Scholar 

  4. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, B. Gahtori, A. Kumar, and A. Dhar, ACS Appl. Energy Mater. 1, 757 (2018).

    Article  Google Scholar 

  5. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, B. Gahtori, A.K. Srivastava, M. Saravanan, and A. Dhar, Materialia 1, 168 (2018).

    Article  Google Scholar 

  6. S. Chen and Z. Ren, Mater. Today 16, 387–395 (2013).

    Article  Google Scholar 

  7. W.G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z.M. Gibbs, C. Felser, and G.J. Snyder, Nature Reviews Materials 1, 16032 (2016).

    Article  Google Scholar 

  8. P. Qiu, X. Huang, X. Chen, and L. Chen, J. Appl. Phys. 106, 103703 (2009).

    Article  Google Scholar 

  9. V. Ponnambalam, P.N. Alboni, J. Edwards, T.M. Tritt, S.R. Culp, and S.J. Poon, J. Appl. Phys. 103, 063716 (2008).

    Article  Google Scholar 

  10. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).

    Article  Google Scholar 

  11. N.J. Takas, M.R. Shabetai, and P.F.P. Poudeu, Sci. Adv. Mater. 3, 571–576 (2011).

    Article  Google Scholar 

  12. P. Maji, N.J. Takas, D.K. Misra, H. Gabrisch, K. Stokes, and P.F.P. Poudeu, J. Solid State Chem. 183, 1120–1126 (2010).

    Article  Google Scholar 

  13. J. Barth, B. Balke, G.H. Fecher, H. Stryhanyuk, A. Gloskovskii, S. Naghavi, and C. Felser, J. Phys. D Appl. Phys. 42, 185401 (2009).

    Article  Google Scholar 

  14. C.-C. Hsu and H.-K. Ma, Mater. Sci. Eng. B 198, 80–85 (2015).

    Article  Google Scholar 

  15. W. Ting, W. Jiang, X. Li, Y. Zhou, and L. Chen, J. Appl. Phys. 102, 103705 (2007).

    Article  Google Scholar 

  16. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys. 46, L673 (2007).

    Article  Google Scholar 

  17. B. Yuan, B. Wang, L. Huang, X. Lei, L. Zhao, C. Wang, and Q. Zhang, J. Electron. Mater. 46, 3076–3082 (2017).

    Article  Google Scholar 

  18. M. Zhou, L. Chen, C. Feng, D. Wang, and J.-F. Li, J. Appl. Phys. 101, 113714 (2007).

    Article  Google Scholar 

  19. C.S. Birkel, W.G. Zeier, J.E. Douglas, B.R. Lettiere, C.E. Mills, G. Seward, A. Birkel, M.L. Snedaker, Y. Zhang, and G.J. Snyder, Chem. Mater. 24, 2558 (2012).

    Article  Google Scholar 

  20. M. Zhou, C. Feng, L. Chen, and X. Huang, J. Alloys Compd. 391, 194–197 (2005).

    Article  Google Scholar 

  21. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd. 407, 326–329 (2006).

    Article  Google Scholar 

  22. W. Ting, W. Jiang, X. Li, S. Bai, S. Liufu, and L. Chen, J. Alloys Compd. 467, 590–594 (2009).

    Article  Google Scholar 

  23. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Mater. Trans. 46, 1481–1484 (2005).

    Article  Google Scholar 

  24. D. Zhao, L. Wang, L. Bo, and W. Di, Metals 8, 61 (2018).

    Article  Google Scholar 

  25. R. He, H. Zhu, J. Sun, J. Mao, H. Reith, S. Chen, G. Schierning, K. Nielsch, and Z. Ren, Mater. Today Phys. 1, 24–30 (2017).

    Article  Google Scholar 

  26. N.S. Chauhan, A. Bhardwaj, T.D. Senguttuvan, R.P. Pant, R.C. Mallik, and D.K. Misra, J. Mater. Chem. C 4, 5766 (2016).

    Article  Google Scholar 

  27. A. Bhardwaj, N.S. Chauhan, B. Sancheti, G.N. Pandey, T.D. Senguttuvan, and D.K. Misra, Phys. Chem. Chem. Phys. 17, 30090 (2015).

    Article  Google Scholar 

  28. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, and G. Chen, Nano Lett. 11, 556 (2010).

    Article  Google Scholar 

  29. A. Bhardwaj, N.S. Chauhan, and D.K. Misra, J. Mater. Chem. A 3, 10777 (2015).

    Article  Google Scholar 

  30. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd. 394, 122–125 (2005).

    Article  Google Scholar 

  31. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, and A. Dhar, Mater. Lett. 228, 250–253 (2018).

    Article  Google Scholar 

  32. R. He, H.S. Kim, Y. Lan, D. Wang, S. Chen, and Z. Ren, Rsc Adv. 4, 64711 (2014).

    Article  Google Scholar 

  33. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, and A. Dhar, J. Materiomics 5, 94 (2019).

    Article  Google Scholar 

  34. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, and Z. Ren, Energy Environ. Sci. 5, 7543–7548 (2012).

    Article  Google Scholar 

  35. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

  36. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077–2082 (2012).

    Article  Google Scholar 

  37. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, in 2006 25th International Conference on Thermoelectrics, (IEEE: 2006), pp. 128–131

  38. M. Zhou, L. Chen, W. Zhang, and C. Feng, J. Appl. Phys. 98, 013708 (2005).

    Article  Google Scholar 

  39. G.A. Slack, Physical Review 105, 829 (1957).

    Article  Google Scholar 

  40. B. Abeles, Physical Review 131, 1906 (1963).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from BRNS, India (Ref No: 37(3)/14/22/2016-BRNS) and UTAP-EXPL/CTE/0050/2017. Author N.S.C. acknowledges CSIR, India (Grant no: 31/001(0430)/ 2014-EMR-1) for financial support. The technical support rendered by Mr. R. Shyam, and Mr. N. K. Upadhyay is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nagendra S. Chauhan or Sivaiah Bathula.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N.S., Bathula, S., Gahtori, B. et al. Enhanced Thermoelectric Performance in Hf-Free p-Type (Ti, Zr)CoSb Half-Heusler Alloys. J. Electron. Mater. 48, 6700–6709 (2019). https://doi.org/10.1007/s11664-019-07486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07486-y

Keywords

Navigation