Skip to main content

Advertisement

Log in

Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

It is crucial to develop solid electrolyte with good mechanical and electrochemical stability for the application of lithium metal battery. In this work, a sandwich-structured composite solid electrolyte is designed and prepared based on the blend of polyvinylidene fluoride-hexafluoropropylene/polyacrylonitrile (PVDF-HFP/PAN) polymer, Li6.46La3Zr1.46Ta0.54O12 as filler, and a layer of PE film is introduced in the middle to act as a skeleton. The sandwich-structured PVDF-HFP/PAN-10%LLZTO-PE composite solid electrolyte displays a tensile strength of 66.58 MPa, high ionic conductivity of 2.28 × 10-4 S/m at 25 °C, wide electrochemical stable window of 4.8 V, and high lithium ion transfer number of 0.44. The LiFePO4 | PVDF-HFP/PAN-10%LLZTO-PE | Li coin battery shows a high specific capacity of 161.9 mAh/g and retains 150.2 mAh/g after 300 cycles at 1 C. Furthermore, the LiFePO4 | PVDF-HFP/PAN-10%LLZTO-PE | Li pouch battery shows excellent safety and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li M, Lu J, Chen ZW et al (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561

    Article  Google Scholar 

  2. Zhu P, Yan C, Dirican M et al (2018) Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A 6:4279–4285

    Article  CAS  Google Scholar 

  3. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  Google Scholar 

  4. Duan J, Tang X, Dai HF et al (2020) Building safe lithium-ion batteries for electric vehicles: a review. Electrochem Energy Rev 3:1–42

    Article  CAS  Google Scholar 

  5. Manthiram A, Yu XW, Wang SF (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  CAS  Google Scholar 

  6. Wei T, Zhang Z-H, Wang Z-M et al (2020) Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12 / PVDF-HFP / LiTFSI / succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl Energy Mater 3:9428–9435

    Article  CAS  Google Scholar 

  7. Liu L, Zhang DC, Xu XJ et al (2021) Challenges and development of composite solid electrolytes for all-solid-state lithium batteries. Chem Res Chin Univ 37:210–231

    Article  CAS  Google Scholar 

  8. Cheng X-B, Zhang R, Zhao C-Z et al (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473

    Article  CAS  Google Scholar 

  9. Wang Q, Wang HC, Wu JY et al (2021) Advanced electrolyte design for stable lithium metal anode: from liquid to solid. Nano Energy 80:105516

    Article  CAS  Google Scholar 

  10. Chen L, Qiu X, Bai Z et al (2021) Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J Energy Chem 52:210–217

    Article  Google Scholar 

  11. Chen L, Huang Y-F, Ma J et al (2020) Progress and perspective of all-solid-state lithium batteries with high performance at room temperature. Energy Fuels 34:13456–13472

    Article  CAS  Google Scholar 

  12. Xu F, Deng S, Guo Q et al (2021) Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2||Li batteries with rigid-flexible coupling interphase. Small Methods 5:2100262

  13. Wang Z, Shen L, Deng S et al (2021) 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater 33:2100353

    Article  CAS  Google Scholar 

  14. Fan L-Z, He H, Nan C-W (2021) Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat Rev Mater 6:1003–1019

    Article  CAS  Google Scholar 

  15. Jian Z, Hu YS, Ji X et al (2017) NASICON-Structured materials for energy storage. Adv Mater 29:1601925

    Article  Google Scholar 

  16. Zhang Q, Cao D, Ma Y et al (2019) Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv Mater 31:e1901131

    Article  Google Scholar 

  17. Jiang Z, Wang S, Chen X et al (2020) Tape-casting Li0.34 La0.56 TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv Mater 32:e1906221

    Article  Google Scholar 

  18. Wang C, Fu K, Kammampata SP et al (2020) Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev 120:4257–4300

    Article  CAS  Google Scholar 

  19. Liu Q, Geng Z, Han C et al (2018) Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sources 389:120–134

    Article  CAS  Google Scholar 

  20. Tan S-J, Zeng X-X, Ma Q et al (2018) Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energy Rev 1:113–138

    Article  CAS  Google Scholar 

  21. Li Z, Huang HM, Zhu JK et al (2019) Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS Appl Mater Interfaces 11:784–791

    Article  CAS  Google Scholar 

  22. Liu W, Liu N, Sun J et al (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745

    Article  CAS  Google Scholar 

  23. Liang YF, Xia Y, Zhang SZ et al (2019) A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene)-poly(propylene carbonate) for solid-state lithium ion batteries. Electrochim Acta 296:1064–1069

    Article  CAS  Google Scholar 

  24. Li A, Liao X, Zhang H et al (2020) Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv Mater 32:e1905517

    Article  Google Scholar 

  25. Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300

    Article  Google Scholar 

  26. Chen L, Li Y, Li S-P et al (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184

    Article  CAS  Google Scholar 

  27. Huo H, Chen Y, Luo J et al (2019) Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 9:1804004

    Article  Google Scholar 

  28. Zhang X, Liu T, Zhang S et al (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785

    Article  CAS  Google Scholar 

  29. Tsai C-L, Roddatis V, Chandran CV et al (2016) Li7La3Zr2O12 interface modification for li dendrite prevention. ACS Appl Mater Interfaces 8:10617–10626

    Article  CAS  Google Scholar 

  30. Beshahwured S L, Wu Y-S, Wu S-h, et al (2021) Flexible hybrid solid electrolyte incorporating ligament-shaped Li6.25Al0.25La3Zr2O12 filler for all-solid-state lithium-metal batteries. Electrochim Acta 366: 137348

  31. Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589

    Article  CAS  Google Scholar 

  32. Yang H, Bright J, Chen B et al (2020) Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. J Mater Chem A 8:7261–7272

    Article  CAS  Google Scholar 

  33. Hu J, He P, Zhang B et al (2020) Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater 26:283–289

    Article  Google Scholar 

  34. Zha W, Chen F, Yang D et al (2018) High-performance Li6.4La3Zr1.4Ta0.6O12 / poly(ethylene oxide) / succinonitrile composite electrolyte for solid-state lithium batteries. J. Power Sources 397:87–94

    Article  CAS  Google Scholar 

  35. Chen RJ, Zhang YB, Liu T et al (2017) Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach. ACS Appl Mater Interfaces 9:9654–9661

    Article  CAS  Google Scholar 

  36. Xu SJ, Sun ZH, Sun CG et al (2020) Homogeneous and fast ion conduction of peo-based solid-state electrolyte at low temperature. Adv Funct Mater 30:2007172

    Article  CAS  Google Scholar 

  37. Sun Y, Zhan X, Hu J et al (2019) Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl Mater Interfaces 11:12467–12475

    Article  CAS  Google Scholar 

  38. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Science and Technology Commission of Shanghai Municipality (21ZR1424900, 19DZ2271100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Lai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Xu, C., Jiang, Y. et al. Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries. Ionics 28, 3243–3253 (2022). https://doi.org/10.1007/s11581-022-04599-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04599-z

Keywords

Navigation