Skip to main content

Advertisement

Log in

Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Graphitic carbons with reasonable pore volume and appropriate graphitization degree can provide efficient Li+/electrolyte-transfer channels and ameliorate the sluggish dynamic behavior of battery-type carbon negative electrode in lithium-ion capacitors (LICs). In this work, onion-like graphitic carbon materials are obtained by using carbon quantum dots as precursors after sintering, and the effects of alkali metal salts on the structure, morphology and performance of the samples are focused. The results show that alkali metal salts as activator can etch graphitic carbons, and the specific surface area and pore size distribution are intimately related to the description of the alkali metal salt. Moreover, it also affects the graphitization degree of the materials. The porous graphitic carbons (S-GCs) obtained by NaCl activation exhibit high specific surface area (77.14 m2·g−1) and appropriate graphitization degree. It is expectable that the electrochemical performance for lithium-ions storage can be largely promoted by the smart combination of catalytic graphitization and pores-creating strategy. High-performance LICs (S-GCs//AC LICs) are achieved with high energy density of 92 Wh·kg−1 and superior rate capability (66.3 Wh·kg−1 at 10 A·g−1) together with the power density as high as 10020.2 W·kg−1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zame KK, Brehm CA, Nitica AT, Richard CL, Schweitzer Iii GD. Smart grid and energy storage: policy recommendations. Renew Sust Energ Rev. 2018;82:1646.

    Google Scholar 

  2. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen ZW. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3(4):279.

    Google Scholar 

  3. Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng YR, Gong RQ, Zheng JP, Zhang CM. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater. 2018;30(17):1705670.

    Google Scholar 

  4. Hagen M, Yan J, Cao WJ, Chen XJ, Shellikeri A, Du T, Read JA, Jow TR, Zheng JP. Hybrid lithium-ion battery-capacitor energy storage device with hybrid composite cathode based on activated carbon/LiNi0.5Co0.2Mn0.3O2. J Power Sources. 2019;433:126689.

    CAS  Google Scholar 

  5. Li G, Yang Z, Yin Z, Guo H, Wang Z, Yan G, Liu Y, Li L, Wang J. Non-aqueous dual-carbon lithium-ion capacitors: a review. J Mater Chem A. 2019;7(26):15541.

    CAS  Google Scholar 

  6. Zhao L, Chen G, Yan T, Zhang J, Shi L, Zhang D. Sandwich-like C@SnS@TiO2 anodes with high power and long cycle for Li-ion storage. ACS Appl Mater Inter. 2020;12(5):5857.

    CAS  Google Scholar 

  7. Li JH, Liu ZC, Zhang QB, Cheng Y, Zhao BT, Dai SG, Wu HH, Zhang KL, Ding D, Wu YP, Liu ML, Wang MS. Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy. 2019;57:22.

    Google Scholar 

  8. Liu L, Zhao HP, Lei Y. Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. InfoMat. 2020;2(1):113.

    Google Scholar 

  9. Wang R, Yao MJ, Niu ZQ. Smart supercapacitors from materials to devices. InfoMat. 2019;1(1):74.

    Google Scholar 

  10. Li ZY, Chen GR, Deng J, Li D, Yan TT, An ZX, Shi LY, Zhang DS. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustain Chem Eng. 2019;7(18):15394.

    CAS  Google Scholar 

  11. Li GC, Yin ZL, Guo HJ, Wang ZX, Yan GC, Yang ZW, Liu Y, Ji XB, Wang JX. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced Lithium-ion hybrid supercapacitor. Adv Energy Mater. 2019;9(2):1802878.

    Google Scholar 

  12. Jagadale A, Zhou X, Xiong R, Dubal DP, Xu J, Yang S. Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater. 2019;19:314.

    Google Scholar 

  13. Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 2020;24:160.

    Google Scholar 

  14. Jin L, Guo X, Gong R, Zheng J, Xiang Z, Zhang C, Zheng JP. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors. Energy Storage Mater. 2019;23:409.

    Google Scholar 

  15. An YB, Chen S, Zou MM, Geng LB, Sun Z, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.

    CAS  Google Scholar 

  16. Li G, Huang Y, Yin Z, Guo H, Liu Y, Cheng H, Wu Y, Ji X, Wang J. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Mater. 2020;24:304.

    Google Scholar 

  17. Zhang C, Xie Z, Yang W, Liang Y, Meng D, He X, Liang P, Zhang Z. NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. J Power Sources. 2020;451:227761.

    CAS  Google Scholar 

  18. Sun T, Liu G, Du L, Bu Y, Tian B. Nitrogen-doped 3D nanocarbon with nanopore defects as high-capacity and stable anode materials for sodium/lithium-ion batteries. Mater Today Energy. 2020;16:100395.

    Google Scholar 

  19. Yang H, Zhang C, Meng Q, Cao B, Tian G. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors. J Power Sources. 2019;431:114.

    CAS  Google Scholar 

  20. Kim DS, Kim YE, Kim H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J Power Sources. 2019;422:18.

    CAS  Google Scholar 

  21. Chen R, Hu Y, Shen Z, He X, Cheng Z, Pan P, Wu K, Zhang X, Tang Z. Highly mesoporous C nanofibers with graphitized pore walls fabricated via ZnCo2O4-induced activating-catalyzed-graphitization for long-lifespan lithium-ion batteries. J Mater Chem A. 2017;5(41):21679.

    CAS  Google Scholar 

  22. Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc. 2016;138(45):14915.

    CAS  Google Scholar 

  23. Yan Z, Hu Q, Yan G, Li H, Shih K, Yang Z, Li X, Wang Z, Wang J. Co3O4/Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chem Eng J. 2017;321:495.

    CAS  Google Scholar 

  24. Ge P, Hou H, Cao X, Li S, Zhao G, Guo T, Wang C, Jiao S. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv Sci. 2018;5(6):1800080.

    Google Scholar 

  25. Chen Y, Murakami N, Chen HY, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019;38(5):468.

    CAS  Google Scholar 

  26. Liu M, Zhang Z, Dou M, Li Z, Wang F. Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon. 2019;151:28.

    CAS  Google Scholar 

  27. Li Y, Song C, Chen J, Shang X, Chen J, Li Y, Huang M, Meng F. Sulfur and nitrogen Co-doped activated CoFe2O4@C nanotubes as an efficient material for supercapacitor applications. Carbon. 2020;162:124.

    CAS  Google Scholar 

  28. Song Z, Lu X, Hu Q, Ren J, Zhang W, Zheng Q, Lin D. Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium-sulfur batteries. J Power Sources. 2019;421:23.

    CAS  Google Scholar 

  29. Cui RC, Xu B, Dong HJ, Yang CC, Jiang Q. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv Sci. 2020;7:1902547.

    CAS  Google Scholar 

  30. Zhang Q, Liu Z, Zhao B, Cheng Y, Zhang L, Wu H-H, Wang M-S, Dai S, Zhang K, Ding D, Wu Y, Liu M. Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 2019;16:632.

    Google Scholar 

  31. Huang S, Li Z, Bo W, Zhang J, Zhao Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294.

    Google Scholar 

  32. He Y, Zhuang X, Lei C, Lei L, Hou Y, Mai Y, Feng X. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today. 2019;24:103.

    CAS  Google Scholar 

  33. Kumagai S, Abe Y, Saito T, Eguchi T, Tomioka M, Kabir M, Tashima D. Lithium-ion capacitor using rice husk-derived cathode and anode active materials adapted to uncontrolled full-pre-lithiation. J Power Sources. 2019;437:226924.

    CAS  Google Scholar 

  34. Zhang L, Guo Y, Shen K, Huo J, Liu Y, Guo S. Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors. J Mater Chem A. 2019;7(15):9163.

    CAS  Google Scholar 

  35. Wang S, Zou K, Qian Y, Deng Y, Zhang L, Chen G. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li–S batteries. Carbon. 2019;144:745.

    CAS  Google Scholar 

  36. Liu J, Deng Y, Li X, Wang L. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain Chem Eng. 2016;4(1):177.

    Google Scholar 

  37. Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 2015;9(3):2556.

    CAS  Google Scholar 

  38. Xia Q, Yang H, Wang M, Yang M, Guo Q, Wan L, Xia H, Yu Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater. 2017;7(22):1701336.

    Google Scholar 

  39. Shi R, Han C, Li H, Xu L, Zhang T, Li J, Lin Z, Wong CP, Kang F, Li B. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J Mater Chem A. 2018;6(35):17057.

    CAS  Google Scholar 

  40. An Y, Tian Y, Wei H, Xi B, Xiong S, Feng J, Qian Y. Porosity-and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv Funct Mater. 2020;30(9):1908721.

    CAS  Google Scholar 

  41. Fromm O, Heckmann A, Rodehorst UC, Frerichs J, Becker D, Winter M, Placke T. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon. 2018;128:147.

    CAS  Google Scholar 

  42. Chen Z, Wu R, Wang H, Zhang KHL, Song Y, Wu F, Fang F, Sun D. Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 2018;11(2):966.

    CAS  Google Scholar 

  43. Liu T, Zhou Z, Guo Y, Guo D, Liu G. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat Commun. 2019;10(1):1.

    Google Scholar 

  44. Xu T, Li D, Chen S, Sun Y, Zhang H, Xia Y, Yang D. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem Eng J. 2018;345:604.

    CAS  Google Scholar 

  45. Han M, Mu Y, Yuan F, Liang J, Jiang T, Bai X, Yu J. Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J Mater Chem A. 2020;8(7):3822.

    CAS  Google Scholar 

  46. Babu B, Shaijumon MM. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. J Power Sources. 2017;353:85.

    CAS  Google Scholar 

  47. Zhu G, Ma L, Lin H, Zhao P, Wang L, Hu Y, Chen R, Chen T, Wang Y, Tie Z, Jin Z. High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019;12(7):1713.

    CAS  Google Scholar 

  48. Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 2018;10(13):5906.

    CAS  Google Scholar 

  49. Yang C, Lan JL, Ding C, Wang F, Siyal SH, Yu Y, Yang X. Three-dimensional hierarchical ternary aerogels of ultrafine TiO2 nanoparticles@porous carbon nanofibers-reduced graphene oxide for high-performance lithium-ion capacitors. Electrochim Acta. 2019;296:790.

    CAS  Google Scholar 

  50. Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chemsuschem. 2014;7(7):1858.

    CAS  Google Scholar 

  51. Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong CP, Kang F, Lin Z, Li B. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon. 2018;140:296.

    CAS  Google Scholar 

  52. Zhang J, Liu X, Wang J, Shi J, Shi Z. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. Electrochim Acta. 2016;187:134.

    CAS  Google Scholar 

  53. Cai M, Sun X, Nie Y, Chen W, Qiu Z, Chen L, Liu Z, Tang H. Electrochemical performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as anode. NANO. 2017;12(04):1750051.

    CAS  Google Scholar 

  54. Jiao X, Hao Q, Xia X, Wu Z, Lei W. Metal organic framework derived Nb2O5@C nanoparticles grown on reduced graphene oxide for high-energy lithium ion capacitors. Chem Commun. 2019;55(18):2692.

    CAS  Google Scholar 

  55. Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459.

    CAS  Google Scholar 

  56. Wang H, Zhang Y, Ang H, Zhang Y, Tan HT, Zhang Y, Guo Y, Franklin JB, Wu X, Srinivasan M, Fan HJ, Yan Q. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater. 2016;26(18):3082.

    CAS  Google Scholar 

  57. Zhao Y, Cui Y, Shi J, Liu W, Shi Z, Chen S, Wang X, Wang H. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J Mater Chem. 2017;5(29):15243.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51804344), the Program of Huxiang Young Talents (No. 2019RS2002), the Innovation and Entrepreneurship Project of Hunan Province, China (No. 2018GK5026) and the Innovation-Driven Project of Central South University (No. 2020CX027). Dr. J. Wang also appreciated the supporting from Furong Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Xi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, YQ., Li, GC., Li, XH. et al. Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors. Rare Met. 39, 1364–1373 (2020). https://doi.org/10.1007/s12598-020-01509-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01509-y

Keywords

Navigation